• ベストアンサー
  • すぐに回答を!

微分方程式の解法

d^2y/dx^2+2*x*dy/dx=0 境界条件 x=0: y=1、x→∞: y→0 この2階の微分方程式を解けという問題ができません。 dy/dx=z と置いて、1階の微分方程式にして解こうとしたのですが、exp(-x^2)が出てきてしまいました。これは確率積分みたいに積分できるのでしょうか。 回答よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数136
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • alice_44
  • ベストアンサー率44% (2109/4758)

普通、そうやるでしょう。 z = A e^(-x^2) から y = A ∫{e^(-x^2)}dx + B {A,B は定数} と積分して、 境界条件から、 y = (2/√π)∫[t=x→∞]{e^(-t^2)}dt. ∫[t=x→∞]{e^(-t^2)} は = (√π)/2 - ∫[t=0→x]{e^(-t^2)} とか変形してもいいが、 いづれにせよ、不定積分 ∫{e^(-x^2)}dx が初等関数でないから、 これ以上平易には書きようがない。 A を決めるときに、ガウス積分を使うね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました。

関連するQ&A

  • 2階微分方程式の解法

    d^2y/dx^2+2*x*dy/dx=0 境界条件 x=0: y=1、x→∞: y→0 上記の微分方程式をルンゲクッタ法を使って数値的に解きたいのですが、どのように x→∞ : y→0 の境界条件をいれればいいかわかりません。どなたか教えて頂けないでしょうか。回答よろしくお願いします。

  • 微分方程式

    微分方程式 d^2y/dx^2=2y^3+2y をみたす関数y(x)を求めよ。ただし,境界条件は,y(0)=0,dy/dx(x=0)=1

  • 微分方程式の解法

    こんにちは。微分方程式で分からない問題があります。 y=(dx/dy)x+4(dx/dy)^2 という問題がわからなくて困っています。 自分が微分方程式を解くときは完全にパターンで解いているのですがその中で(dx/dy)^2というものは見たことがありません。 右辺の二項目が「d^2y/dx^2」なら二階微分方程式に当てはめれば解けるのですが、「(dx/dy)^2」と「d^2y/dx^2」は違うものですよね?(まず、違うということが正しいのかが微妙です)では、この場合はどうやって解けばいいのでしょうか。 よろしくお願いいたします。

  • 微分方程式の解法。

    現在、私は微分方程式が解けなくて困っています。 その微分方程式は次のようになります。 (d^2/dr^2)T+(1/r)(d/dr)T=(1/K)(d/dt)T をラプラス変換した、 T''+(1/r)*T'-(s/K)*T=0 です。 式のsはラプラス演算子で、Kは定数です。 この式の解法を調べたところ、上のような微分方程式はベッセルの変形微分方程式というものであることがわかり、一般解を導出し、計算したのですが、ラプラス逆変換が困難で挫折しました。 なにか他の解法はありませんか? 今、考えているのが解を次のように仮定し、 T=A*exp(-rs)+B*exp(-rs) 上の式に代入し、境界条件によってAとBを決定する方法です。 この方法はまずいですか? 困っているので回答お願いいたします。

  • 微分方程式について

    L(U)=d^2U/dx^2 - U =0(0<x<1) 境界条件U(0)=0 U(1)=1 この微分方程式を1次元2次要素を用いて解くという問題がわかりません。 お願いします。教えてください。

  • 微分方程式

    (d^2)φ/dx^2=eNa/ε0εs 境界条件 x=-xp:dφ(x)/dx=0  (pはxの添え字です) x=0:φ(x)=0   これをφについて微分方程式を解きたいのですが… ちなみに解答は φ(x)=eNa/ε0εs{(x^2/2)+xpx} (pはxの添え字です) です。お願いします。

  • 微分方程式の問題

    下の微分方程式について教えてください。 yy'=x*exp(x^2+y^2) 但し、x=0の時y=0 これを解き、グラフを描け。という問題なんですけど・・・ 方程式は次のように解いたんですけど {y*exp(-y^2)}dy={x*exp(x^2)}dx y^2=log{1/(c-expx^2)} cは積分定数 この答えもあまり自信がないのですが・・・もし間違っていたらご指摘お願いします。 この後グラフを描きたいんですけど、どのようなグラフになるのでしょうか?

  • 微分方程式

    (y+3x)dX+(x+1)dy=0 この微分方程式の一般解を求めたいのですか、(y+3x)dXはyがあるので積分できないし、(x+1)dyはxがあるので積分できないです。どのように解けばいいですか?

  • 微分方程式に関する問題です。

    (x^2){(d^2)y/d(x^2)} - x(dy/dx) + y = x^3    (*) ********************************************************* (1)y = xφ(x)が微分方程式(*)の解であるとき、φのみたす微分方程式を求めよ。 ********************************************************* y = xφ(x)からy' , y''を計算して代入し、 φ''(x) = x/2 となりました。(答えの書き方はこれでいいのか分かりません。) ********************************************************* (2)φ'(x)を求めよ。 ********************************************************* (1)の答えの両辺を積分して φ'(x) = (x^2)/4 + C となりました。 ********************************************************* (3)微分方程式(*)の一般解を求めよ。 ********************************************************* (3)のとき方が分かりません。 どのようにして解いていけばいいのでしょうか? よろしくお願いします。

  • 微分方程式について

    微分方程式について。 yやdy/dxの形ならば解けるのですが ちょっと変わった形になると解けずに困っております。 回答お願いします。 1 未知関数x(t),y(t)に関する微分方程式 x´(t)=y(t), y´(t)=-x(t)を 初期条件x(0)=a, y(0)=bの下で解け。 2 x=x(t)を変数tのC^∞級関数とする。 このとき、 d^2x/dt^2 +(dx/dt)^2 -4=0 を解け。 3 tの関数x(t)が次の微分方程式を満たすとする x´+x^2+a(t)x+b(t)=0 ただしx´=dx/dtである。 ・x(t)=u´(t)/u(t)のとき、関数u(t)の満たす微分方程式を求めよ。 ・微分方程式 x´=x(1-x)の一般解を求めよ。 長いですが回答お願いします