• 締切済み
  • すぐに回答を!

微分方程式の解法ですが、

(x^2-y^2-z^2)dx+2xydy+2zxdz=0 3変数の微分方程式ですが、完全形ではないものです。 どのように解けばよいか教えて下さい。 積分因子を求めると思うのですが、まず導出過程が分かりません…

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数21
  • ありがとう数1

みんなの回答

  • 回答No.1
noname#133363
noname#133363

2ydy=d(y^2)などに注目して変形すれば (xd(y^2)-y^2dx)+(xd(z^2)-z^2dx)+x^2dx=0。 あとは商の積分の公式でできるんじゃないでしょうか。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 微分方程式の問題です

    (x^2-y^2-z^2)dx+2xydy+2zxdx=0 3変数の微分方程式ですが、完全形ではないものです。 どのように解けばよいか教えて下さい。

  • 微分方程式の一般解の求め方

    (x + (x^2 + y^2)x^3)dx + ydy = 0 の一般解の解き方がわからなくて困ってます。一見して完全形になるのかと思ったのですが、d((x+・・・・)=0にはならないので完全形ではなく積分因子を導入しなければならないようなのです。積分因子をうまく求める方法はありますか?高等教育で数3を学んでおらず、微分方程式に関してほとんど独学でやってきてるので、できるだけ詳しく教えて下さい。よろしくお願いします。

  • 1階線形7微分方程式

     次の微分方程式を解いてください。  y´-(2X+1)y=2Xe^X    積分因子は    e^-(X^2+X)だと思いますが…  よろしくお願いします。

  • 微分方程式について

    こんにちは。 今、独学で微分方程式の勉強を行っているのですが、問題集に載っていた下記の問題の解き方が分からず困っています。 ・(2y+3xy^2)dx+(2x+4x^2y^2)dy=0の一般解を求める  完全微分方程式ではないので、積分因子を求める必要があり、u=x^mt^nと仮定して求めようとしたのですが、途中で、n-m=4x^2 3n-4ym=-6 という式が出てきてしまい、計算が出来ません。 ・(y^2+2ye^x)dx+(2y+e^x)dy=0,y(0)=1  2変数の初期値問題はどのように解けば良いのでしょうか? 何度も解いてみたのですが、答えを求める事は出来ませんでした。 少しでもアドバイスを頂ければ幸いです。

  • 微分方程式の問題です

    微分方程式の問題です (x^2-3y^2)x+(3x^2-y^2)ydy/dx=0 という問題です y=xuとおいて変数分離して解いていくと、uについての積分ができませんでした。 詳しい解答お願いします。

  • 積分因子について

    知恵袋でも質問したのですが、回答がこなかったのでこちらで質問します。 答えられる範囲でいいんで回答お願いします。 微分方程式の積分因子による解放について (x + (x^2 + y^2)x^3)dx + ydy = 0という微分方程式の積分因子を用いた解法について教えてください。 積分因子については、exp((1/2)x^4)ともとまったのですが、その後の計算がよくわかりません。 積分因子をかけることによって、完全微分方程式となって解がはじめて得られるようになると思うので、 積分因子をかけました。 exp((1/2)x^4)(x+(x^2+y^2)x^3)dx+exp((1/2)x^4)ydy となったのですが、ここから分かりません。 詳しく回答教えていただけるとありがたいです。 それから、完全微分方程式という用語についてなのですが、この完全ってどういう意味なんでしょうか? 完全というのは、解が得られるという意味なのでしょうか? 最初の式ってのは、解が得られないのでしょうか? ですが、積分因子を用いることによって解が得られるのでしょうか? よく完全微分方程式は、du=pdx+qdyみたいな形で示されますが、よくこの式の意味するところがわかりません。 u(x,y)という二つの変数をもった関数があったとする。 その関数をxについて偏微分したものが、pを表しているのでしょうか? pはdu(x,y)/dxというのが省略されてpとかいているだけなのでしょうか? 多変数関数、偏微分についてもくわしく勉強したことがなく、いきなり微分方程式を独学で勉強しているので、謝った考えた方をしている可能性もあり、きちんと理解しておきたいので、よろしくお願いします。 できれば詳しく解説してくださるとありがたいです

  • 微分方程式の問題です

    微分方程式についての質問です。 dy/dx=y(2x^3-y^3)/((x)(x^3-2y^3)) を解けという問題です。 y = xu と置いて変数分離したんですが、そこでつまずいてしまいました。 途中過程を含めて解答お願いします。

  • 微分方程式の解法

    d^2y/dx^2+2*x*dy/dx=0 境界条件 x=0: y=1、x→∞: y→0 この2階の微分方程式を解けという問題ができません。 dy/dx=z と置いて、1階の微分方程式にして解こうとしたのですが、exp(-x^2)が出てきてしまいました。これは確率積分みたいに積分できるのでしょうか。 回答よろしくお願いします。

  • 微分方程式の問題がわからなくて困っています

    次の問題のやり方がわからなくて困っています。 次の微分方程式を解け。 式は、(x^2+4)ydy/dx=2x(y^2+1)で、y(0)=1です。 わかる方ぜひ解答お願いします。  

  • 微分方程式

    こんにちは。微分方程式の問題が解けなくて困っています。 次のx(t)に関する微分方程式 d^2x/dt^2=-1/x^2 ただし初期条件はt=0でx=X0(x0>0),dx/dt=√2であるとする。 (1) 与式の両辺にdx/dtを乗じて積分することにより、初期条件を満たすxについての1階微分方程式をもとめよ。 必要ならば、公式d/dt(dx/dt)^2=2*(dx/dt)*(d^2x/dt^2) (2)0<x0<1のときt(t≧0)餓変化した場合のx(t)の最大値を求めよ。 (1)は与式の両辺にdx/dtをかけて dx/dt(d^2x/dt^2)=-1/x^2*(dx/dt) 与えられた公式をつかい (1/2)*d/dt*(dx/dt)^2=-dx/dt*(1/x^2) (1/2)*d/dx*(dx/dt)^2=-(1/x^2) 両辺xで積分すると (dx/dt)^2=2/x+2(1-1/X0)(初期条件より) (2) は dt/dxが0すなわち1/xが-(1-1/X0)のときかとおもったのですが よくわからないです。 どなたかおねがいします。。