• 締切済み
  • すぐに回答を!

微分方程式の問題です

(x^2-y^2-z^2)dx+2xydy+2zxdx=0 3変数の微分方程式ですが、完全形ではないものです。 どのように解けばよいか教えて下さい。

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数112
  • ありがとう数0

みんなの回答

  • 回答No.4

Bonjour ! はろ~! Je m'appelle Mr.Nice Goo! はろ~! 微分方程式の解説だよ。

共感・感謝の気持ちを伝えよう!

質問者からの補足

ごめんなさい。 × (x^2-y^2-z^2)dx+2xydy+2zxdx=0 ○ (x^2-y^2-z^2)dx+2xydy+2zxdz=0 でした。最後のdxはdzの間違いです。

関連するQ&A

  • 微分方程式の解法ですが、

    (x^2-y^2-z^2)dx+2xydy+2zxdz=0 3変数の微分方程式ですが、完全形ではないものです。 どのように解けばよいか教えて下さい。 積分因子を求めると思うのですが、まず導出過程が分かりません…

  • 微分方程式の問題です

    微分方程式の問題です (x^2-3y^2)x+(3x^2-y^2)ydy/dx=0 という問題です y=xuとおいて変数分離して解いていくと、uについての積分ができませんでした。 詳しい解答お願いします。

  • 微分方程式の問題がわからなくて困っています

    次の問題のやり方がわからなくて困っています。 次の微分方程式を解け。 式は、(x^2+4)ydy/dx=2x(y^2+1)で、y(0)=1です。 わかる方ぜひ解答お願いします。  

  • 回答No.3

!

共感・感謝の気持ちを伝えよう!

質問者からの補足

ごめんなさい。 × (x^2-y^2-z^2)dx+2xydy+2zxdx=0 ○ (x^2-y^2-z^2)dx+2xydy+2zxdz=0 でした。最後のdxはdzの間違いです。

  • 回答No.2

 !!

共感・感謝の気持ちを伝えよう!

質問者からの補足

ごめんなさい。 × (x^2-y^2-z^2)dx+2xydy+2zxdx=0 ○ (x^2-y^2-z^2)dx+2xydy+2zxdz=0 でした。最後のdxはdzの間違いです。

  • 回答No.1

両辺をdyで割ってみたら見えてきませんか?

共感・感謝の気持ちを伝えよう!

質問者からの補足

ごめんなさい。 × (x^2-y^2-z^2)dx+2xydy+2zxdx=0 ○ (x^2-y^2-z^2)dx+2xydy+2zxdz=0 でした。最後のdxはdzの間違いです。

関連するQ&A

  • 微分方程式の問題が分かりません。

    変数係数の微分方程式です。x^3(d^3y/dx^3)-3x^2(dy^2/dx^2)+6x(dy/dx)-6y=2x^4e^x どなたか、回答お願いします。

  • 微分方程式について

    次のような微分方程式があります d^2 x/dx^2 - (dy/dx)(4+x)/x +y*(6+2x)/x^2 =0 問題は以下です y=ux^2(uはxの関数)がこの微分方程式の解となるために uの満たすべき微分方程式を求めなさい。 要は u''=u'=u になればいいということじゃないのでしょうか ですがこれだと微分方程式になりません もしくはこれが解答でいいのでしょうか? ヒントのみでもいいので教えてください。

  • 微分方程式

    微分方程式 dy/dx-2xy=2xy~2 について。 (1)z=1/yとするとき、z=z(x)が満たす微分方程式を求めよ (2)(1)で求めたzに対する微分方程式の一般解を求めよ (3)yの一般解および特殊解を求めよ という問題があります。 これは教科書にあるような、微分方程式の公式を用いて解くのでしょうか よく分からないので詳しく教えてください。

  • 微分方程式の問題です

    微分方程式についての質問です。 dy/dx=y(2x^3-y^3)/((x)(x^3-2y^3)) を解けという問題です。 y = xu と置いて変数分離したんですが、そこでつまずいてしまいました。 途中過程を含めて解答お願いします。

  • 微分方程式の問題です。

    微分方程式の問題です。 微分方程式の問題で、 (d^2y)/(dx^2)+(tanx)*{(dy)/(dx)}+(cos^2x)*y=0 の一般解を求めよという問題なのですが、解き方が分からず困っています>< 解法が分かる方がいれば、解法を教えていただけないでしょうか? よろしくお願いします!!

  • 微分方程式ydy=(y^2 + 1)dxについて

    微分方程式:ydy = (y^2 + 1)dx, y(0) = 0 を解くと、一般解がy^2 = Ce^2x - 1 (Cは任意定数)となると思うのですが、解答に載っていたy(0) = 0のときの特殊解が、y = √(e^2x -1) となっていました。 y = -√(e^2x -1) は、なぜ特殊解として書かれていないのでしょうか? どなたかご教授ください。どうぞよろしくお願いします。

  • 微分方程式について

    微分方程式について。 yやdy/dxの形ならば解けるのですが ちょっと変わった形になると解けずに困っております。 回答お願いします。 1 未知関数x(t),y(t)に関する微分方程式 x´(t)=y(t), y´(t)=-x(t)を 初期条件x(0)=a, y(0)=bの下で解け。 2 x=x(t)を変数tのC^∞級関数とする。 このとき、 d^2x/dt^2 +(dx/dt)^2 -4=0 を解け。 3 tの関数x(t)が次の微分方程式を満たすとする x´+x^2+a(t)x+b(t)=0 ただしx´=dx/dtである。 ・x(t)=u´(t)/u(t)のとき、関数u(t)の満たす微分方程式を求めよ。 ・微分方程式 x´=x(1-x)の一般解を求めよ。 長いですが回答お願いします

  • 微分方程式の問題(4問)がわからないので教えていた

    微分方程式の問題(4問)がわからないので教えていただきたいです。できれば途中式、解説などもお願いいたします 【1】、【2】微分方程式の一般解を求めよ 【1】 dy/dx+(x-2)/y=0 【2】 dy/dx+1/x*y(x)=e^2x 【3】、【4】微分方程式を求めよ 【3】 d^2y/dt^2 + dy/dt - 2y(t) = sin t 【y(0)=0、 y'(0)=0】 【4】 dq(t)/dt + q(t)/RC = sin 2t 【q(0)=0】

  • 微分方程式

    こんにちは。微分方程式の問題が解けなくて困っています。 次のx(t)に関する微分方程式 d^2x/dt^2=-1/x^2 ただし初期条件はt=0でx=X0(x0>0),dx/dt=√2であるとする。 問題 与式の両辺にdx/dtを乗じて積分することにより、初期条件を満たすxについての1階微分方程式をもとめよ。 必要ならば、公式d/dt(dx/dt)^2=2*(dx/dt)*(d^2x/dt^2) 少し問題の書き方がおかしいかもしれませんが(微分の書き方)どなたかお願いします。 自分なりにといたのですが 与式の両辺にdx/dtをかけて dx/dt(d^2x/dt^2)=-1/x^2*(dx/dt) 与えられた公式をつかい (1/2)*d/dt*(dx/dt)^2=-dx/dt*(1/x^2) ∫(1/2)*d/dt*(dx/dt)^2=-∫dx/dt*(1/x^2) ????? と与えられたヒント通りにしてそこからどうしたらいいのかわからなくなってしまいました・・・

  • 微分方程式の質問です

    連立微分方程式の問題です dx/dt=-x+z dy/dt=-2x+y+z dz/dt=x-y+2zの一般解を求めろという問題です。 よろしくお願いします。