• 締切済み
  • すぐに回答を!

微分方程式の質問です

連立微分方程式の問題です dx/dt=-x+z dy/dt=-2x+y+z dz/dt=x-y+2zの一般解を求めろという問題です。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.2
  • info22
  • ベストアンサー率55% (2225/4034)

行列による連立微分方程式の一般解の求め方と例題が次のURLに掲載されていますのでそれに習って、解いてみてください。 http://next1.cc.it-hiroshima.ac.jp/MULTIMEDIA/diffpub/node33.html やってみてわからなければ、途中までの計算を補足に書いて、その先の行き詰った箇所を補足質問して下さい。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

資料ありがとうございます。 わからなかったらまた質問させてください。

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

行列 -1 0 1 -2 1 1 1 -1 2 の固有値・固有ベクトルを求めてください.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ヒントありがとうございます。

関連するQ&A

  • 次の連立微分方程式の一般解がわかりません。

    次の連立微分方程式の一般解がわかりません。 dx/dt=x-2z dy/dt=2x-y-2z dz/dt=-2x+2y よろしくお願いします。

  • 連立微分方程式

    連立微分方程式 dx/dt=5x+4y dy/dt=-x+y の一般解を求めて下さい。

  • 微分方程式

    dx/dt=3y dy/dt=x-z dz/dt=-y この微分方程式の解法をお願いします。

  • 微分方程式

    微分方程式 dy/dx-2xy=2xy~2 について。 (1)z=1/yとするとき、z=z(x)が満たす微分方程式を求めよ (2)(1)で求めたzに対する微分方程式の一般解を求めよ (3)yの一般解および特殊解を求めよ という問題があります。 これは教科書にあるような、微分方程式の公式を用いて解くのでしょうか よく分からないので詳しく教えてください。

  • 微分方程式つまらなさすぎる(?)悩み

    (1) dy/dx=f(ax+by+c)のときax+by+c=zとおいて zに関する微分方程式を作れ。 (2) (1)を利用して、微分方程式dy/dx=x+y+1を解け。 この問題について質問があります。まず(1)についてですが、 答えが dz/dx=a+bf(z) でした。私はもっと変形できるのかと 思いずっと悩んでいました。でもこれが答えだったんです。 何をもって”微分方程式”というのでしょうか?また(1)の答えは これ以外にはあり得ないのでしょうか?例えばdxじゃなくてdy が入っていてもいいと思うし、なぜxが選択されたのか不明です。 次に(2)の解説の中で、x+y+1=zとおくと、(1)から dz/dx=1+z・・・(1) 1+z=0 は(1)の解である。・・・ となっていました。なんで1+z=0 が(1)の解になるのでしょうか? これはすなわちdz/dx=0 ということだと思うのですが何をもって この解が導かれたのかさっぱりです。脚注にも説明はありませんでした。 またf(z)がzと表記が変わったことにも違和感を覚えます。 回答よろしくお願いします。

  • 連立微分方程式の解き方について

    dx/dt=-y+z, dy/dt=-x+y, dz/dt=x+zの一般解の求め方を教えてください。

  • 連立常微分方程式の問題。。。

    手元の参考書などを調べても、連立された微分方程式について書いていなくて困っています。 以下の問題なのですが、どのように進めていけばよいのでしょうか?? ------------------------------------------------------- 問) dx/dt + 2x - 3y = exp(t) dy/dt - 3x + 2y = exp(2t) について、以下の問に答えなさい。 (1)x に関する2階の非同次常微分方程式を求めなさい。 (2)(1)を解き、x の一般解を求めなさい。 (3)(2)を用い、y の一般解を求めなさい。 -------------------------------------------------------- 基本的なものなのかもしれませんが、連立微分方程式について、 一般的にどのように取り組んだらよいのかわからず困っています。 お手数ですが、よろしくお願いします。

  • 微分方程式の問題(4問)がわからないので教えていた

    微分方程式の問題(4問)がわからないので教えていただきたいです。できれば途中式、解説などもお願いいたします 【1】、【2】微分方程式の一般解を求めよ 【1】 dy/dx+(x-2)/y=0 【2】 dy/dx+1/x*y(x)=e^2x 【3】、【4】微分方程式を求めよ 【3】 d^2y/dt^2 + dy/dt - 2y(t) = sin t 【y(0)=0、 y'(0)=0】 【4】 dq(t)/dt + q(t)/RC = sin 2t 【q(0)=0】

  • 連立微分方程式

    連立微分方程式の問題です。 dx/dt = -3x+y dy/dt = 5x+y 回答お願いします。

  • ベッセルの方程式の問題の解き方が分かりません

     次のベッセルの方程式の問題の解き方が分かりません。  数学に詳しい方、よろしければご教示願えないでしょうか。 問題は、  ベッセルの方程式に帰着できるさまざまな方程式がある。示されている置換を 使って、次の微分方程式の一般解を求めよ。 4*x^2*y" + 4*x*y' + (x - ν^2)*y = 0 (√x = z)  このように解いてみました。  ベッセルの微分方程式は、 x^2*y" + x*y' + (x^2 - ν^2)*y = 0 で、  一般解は、 y(x) = A*Jν(x) + B*Yν(x) ここで、A と Bは任意定数、Jν(x)は第1種ベッセル関数、Yν(x)は第2種ベッセル 関数。 √x = z より、 dz/dx = 1 / (2*√x) y'とy"は、 y' = dy/dx = (dy/dz)*(dz/dx) = (dy/dz)/(2*√x) y" = d^2y/dx^2 = (d/dx)*(dy/dx) = (d/dz)/(2*√x)*(dy/dz)/(2*√x) = (d^2y/dz^2)/(4*x) ゆえに、 4*x^2*y" + 4*x*y' + (x - ν^2)*y = 4*x^2*(d^2y/dz^2)/(4*x) + 4*x*(dy/dz)/(2*√x) + (x - ν^2)*y = x*(d^2y/dz^2) + 2*√x*(dy/dz) + (x - ν^2)*y = z^2*(d^2y/dz^2) + 2*z*(dy/dz) + (z^2 - ν^2)*y = 0 となって、第 2項目が z*(dy/dz) にならず、2*z*(dy/dz) になってしまいます。  本の回答をみると、 A*Jν(√x) + B*Yν(√x) となっているので、問題の微分方程式を、 z^2*(d^2y/dz^2) + z*(dy/dz) + (z^2 - ν^2)*y = 0 に変形したのだと思いますが、どのようにすれば良いのでしょうか ?  同様に下記の問題も、 x^2*y" + x*y' + 4*(x^4 - ν^2)*y = 0 (x^2 = z) 同じ解き方をしたため、 z^2*(d^2y/dz^2) + z*(dy/dz) + (z^2 - ν^2)*y = 0 に変形できませんでした。  なにとぞよろしくお願いします。