• ベストアンサー
  • すぐに回答を!

次の連立微分方程式の一般解がわかりません。

次の連立微分方程式の一般解がわかりません。 dx/dt=x-2z dy/dt=2x-y-2z dz/dt=-2x+2y よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数277
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • info22_
  • ベストアンサー率67% (2650/3922)

>連立微分方程式の一般解がわかりません。 解き方はわかるけど、それを解いたときの一般解だけがわからないということですか? 分かる所までの途中計算を補足に書いた上で、どこがわからないかを訊いて下さい。 解き方 dx/dt=x-2z …(1) dy/dt=2x-y-2z …(2) dz/dt=-2x+2y …(3) (2)-(1)より d(y-x)/dt=x-y d(y-x)/dt+(y-x)=0 y-x=c1e^(-t) y=x+c1e^(-t)…(4) (2)に代入 dx/dt-c1e^(-t)=x-c1e^(-t)-2z dx/dt-x=-2z tで微分 d^2x/dt^2-dx/dt=-2dz/dt (3),(4)を代入 d^2x/dt^2-dx/dt=-4c1e^(-t) x=c2+c3e^t-2c1e^(-t) …(5) (4)に代入すれば y=c2+c3e^t-c1e^(-t) …(6) (5)を(1)に代入して 2z=x-dx/dt=c2+c3e^t-2c1e^(-t)-(c3e^t+2c1e^(-t))=c2-4c1e^(-t) z=(1/2)c2-4c1e^(-t) …(7) (5),(6),(7)が答え

共感・感謝の気持ちを伝えよう!

質問者からのお礼

詳しくありがとうございます。 理解できました。

その他の回答 (1)

  • 回答No.1

ヒント:(dx/dt)±(dy/dt)=d(x±y)/dt あとは普通に解けます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ヒントありがとうございます。

関連するQ&A

  • 微分方程式の質問です

    連立微分方程式の問題です dx/dt=-x+z dy/dt=-2x+y+z dz/dt=x-y+2zの一般解を求めろという問題です。 よろしくお願いします。

  • 連立微分方程式

    x=x(t), y=y(t)をtの関数として、次の連立微分方程式を考える。    dx/dt=2x+y dy/dt=x+2y (1)z=x+y, w=x-yとおいて、z,wについての微分方程式に書き換えなさい。 z+w=2x, z-w=2yつまり、x=(z+w)/2, y=(z-w)/2 これを、x,yにするだけでよいのでしょうか?

  • 連立微分方程式

    連立微分方程式 dx/dt=5x+4y dy/dt=-x+y の一般解を求めて下さい。

  • 連立微分方程式

    x=x(t), y=y(t)をtの関数として、次の連立微分方程式を考える。    dx/dt=2x+y dy/dt=x+2y (1)z=x+y, w=x-yとおいて、z,wについての微分方程式に書き換えなさい。 z,wを無視して解くことはできるのですが z=x+y, w=x-yに置き換えるということがよくわかりません。 初歩的な質問ですがよろしくお願いしますm(__)m

  • 微分方程式の一般解を求めたいです。

    dy/dx = (a+by)(c(x)+d(x)y) ここで、a,bは定数、c(x),d(x)はxの区間Iで連続とする。 (1)この微分方程式は、変数変換y = 1/b(1/z - a)により次の線形微分方程式に変換されるという。 dz/dx = f(x)z + g(x) をf(x),g(x)をa,b,c(x),d(x)を用いて表せ。 ********************************************* これはf(x) = ad(x) - bc(x) g(x) = -d(x) として答えがでました。 ********************************************* (2)a = b = 1,c(x) = x + 2/x , d(x) = xとするとき、微分方程式の一般解を求めよ。 dz/dx = -2z/x -x という式になると思うんですけど一般解をどう導き出していいのか分かりません。よろしくお願いします。

  • 微分方程式の問題(4問)がわからないので教えていた

    微分方程式の問題(4問)がわからないので教えていただきたいです。できれば途中式、解説などもお願いいたします 【1】、【2】微分方程式の一般解を求めよ 【1】 dy/dx+(x-2)/y=0 【2】 dy/dx+1/x*y(x)=e^2x 【3】、【4】微分方程式を求めよ 【3】 d^2y/dt^2 + dy/dt - 2y(t) = sin t 【y(0)=0、 y'(0)=0】 【4】 dq(t)/dt + q(t)/RC = sin 2t 【q(0)=0】

  • 連立常微分方程式の問題。。。

    手元の参考書などを調べても、連立された微分方程式について書いていなくて困っています。 以下の問題なのですが、どのように進めていけばよいのでしょうか?? ------------------------------------------------------- 問) dx/dt + 2x - 3y = exp(t) dy/dt - 3x + 2y = exp(2t) について、以下の問に答えなさい。 (1)x に関する2階の非同次常微分方程式を求めなさい。 (2)(1)を解き、x の一般解を求めなさい。 (3)(2)を用い、y の一般解を求めなさい。 -------------------------------------------------------- 基本的なものなのかもしれませんが、連立微分方程式について、 一般的にどのように取り組んだらよいのかわからず困っています。 お手数ですが、よろしくお願いします。

  • 微分方程式について

    微分方程式について。 yやdy/dxの形ならば解けるのですが ちょっと変わった形になると解けずに困っております。 回答お願いします。 1 未知関数x(t),y(t)に関する微分方程式 x´(t)=y(t), y´(t)=-x(t)を 初期条件x(0)=a, y(0)=bの下で解け。 2 x=x(t)を変数tのC^∞級関数とする。 このとき、 d^2x/dt^2 +(dx/dt)^2 -4=0 を解け。 3 tの関数x(t)が次の微分方程式を満たすとする x´+x^2+a(t)x+b(t)=0 ただしx´=dx/dtである。 ・x(t)=u´(t)/u(t)のとき、関数u(t)の満たす微分方程式を求めよ。 ・微分方程式 x´=x(1-x)の一般解を求めよ。 長いですが回答お願いします

  • 連立微分方程式と特殊解について

    dx/dt=-3x-y, dy/dt=4x+2yの特殊解が定数A、B,mを用いて、x=Aexp(mt), y=Bexp(mt)と表されるとして、微分方程式の一般解を求める方法を教えてください。

  • 微分方程式

    微分方程式 dy/dx-2xy=2xy~2 について。 (1)z=1/yとするとき、z=z(x)が満たす微分方程式を求めよ (2)(1)で求めたzに対する微分方程式の一般解を求めよ (3)yの一般解および特殊解を求めよ という問題があります。 これは教科書にあるような、微分方程式の公式を用いて解くのでしょうか よく分からないので詳しく教えてください。