- ベストアンサー
- すぐに回答を!
微分方程式の一般解を求めたいです。
dy/dx = (a+by)(c(x)+d(x)y) ここで、a,bは定数、c(x),d(x)はxの区間Iで連続とする。 (1)この微分方程式は、変数変換y = 1/b(1/z - a)により次の線形微分方程式に変換されるという。 dz/dx = f(x)z + g(x) をf(x),g(x)をa,b,c(x),d(x)を用いて表せ。 ********************************************* これはf(x) = ad(x) - bc(x) g(x) = -d(x) として答えがでました。 ********************************************* (2)a = b = 1,c(x) = x + 2/x , d(x) = xとするとき、微分方程式の一般解を求めよ。 dz/dx = -2z/x -x という式になると思うんですけど一般解をどう導き出していいのか分かりません。よろしくお願いします。
- goo212121
- お礼率50% (15/30)
- 回答数2
- 閲覧数102
- ありがとう数1
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- inara1
- ベストアンサー率78% (652/834)
>これは f(x) = a*d(x) - b*c(x)、g(x) = -d(x) として答えがでました 合ってます。 >dz/dx = -2*z/x - x という式になると思う 合ってます。 >一般解をどう導き出していいのか分かりません z = x^2*p(x) とおいてみてください。
関連するQ&A
- 微分方程式に関する問題です。
dy/dx = (a+by)(c(x)+d(x)y) ここで、a,bは定数、c(x),d(x)はxの区間Iで連続とする。 (1)この微分方程式は、変数変換y = 1/b(1/z - a)により次の線形微分方程式に変換されるという。 dz/dx = f(x)z + g(x) をf(x),g(x)をa,b,c(x),d(x)を用いて表せ。 (2)a = b = 1,c(x) = x + 2/x , d(x) = xとするとき、微分方程式の一般解を求めよ。 途中の計算などもできれば詳しくお願いします。
- 締切済み
- 数学・算数
その他の回答 (1)
関連するQ&A
- 微分方程式つまらなさすぎる(?)悩み
(1) dy/dx=f(ax+by+c)のときax+by+c=zとおいて zに関する微分方程式を作れ。 (2) (1)を利用して、微分方程式dy/dx=x+y+1を解け。 この問題について質問があります。まず(1)についてですが、 答えが dz/dx=a+bf(z) でした。私はもっと変形できるのかと 思いずっと悩んでいました。でもこれが答えだったんです。 何をもって”微分方程式”というのでしょうか?また(1)の答えは これ以外にはあり得ないのでしょうか?例えばdxじゃなくてdy が入っていてもいいと思うし、なぜxが選択されたのか不明です。 次に(2)の解説の中で、x+y+1=zとおくと、(1)から dz/dx=1+z・・・(1) 1+z=0 は(1)の解である。・・・ となっていました。なんで1+z=0 が(1)の解になるのでしょうか? これはすなわちdz/dx=0 ということだと思うのですが何をもって この解が導かれたのかさっぱりです。脚注にも説明はありませんでした。 またf(z)がzと表記が変わったことにも違和感を覚えます。 回答よろしくお願いします。
- ベストアンサー
- 数学・算数
- 微分方程式の問題で
微分方程式の問題で 「a,bが任意定数のとき、次式が一般解になるような最小階数の微分方程式を示せ。 y = ax^2 + 2bx」 の答えがわかりません。 答えは一階の微分方程式で (dy/dx) + y = ax^2 + 2(a+b)x +2b となるのか 二階での微分方程式で x^2 * y" - 2xy' +2y = 0 となるのかで迷っていて、 一階の微分方程式が特殊解なのか一般解なのかの判断がつかないと言う状況です。 というのも教科書には 「限定状況を与えなければn階の微分方程式にはn個の任意定数を含む」 とあるのですがこの限定条件がわからなくて判断がつきません。 どちらが正しいのでしょうか?
- 締切済み
- 数学・算数
- 微分方程式について。
微分方程式の一般解をもとめます。 (1)dy/dx=(y^2)+y これは、線形微分方程式を使ってとくのでしょうか?? (2)(x-y)y'=2y 同次形で解きましたが 途中の式、 ∫du(1-u)/(u+u^2)=∫1/xでの右辺の積分がわかりません。 両者の解答の導き方を教えてください。お願いします。
- 締切済み
- 数学・算数
- 微分方程式の解の求め方
dy/dx + A y^(1/2) =C 但しA,C は定数 y^(1/2)はルートyです この微分方程式の解を教えてください。C=0の場合の解は本に載っておりますが、これがある値をとる場合はどのように計算式を導いていけばよいか御教示お願い致します。
- ベストアンサー
- 数学・算数
- 微分方程式の問題です。
以下の問題の解答のチェックをお願いします。 図のyに関する微分方程式について、以下の問いに答えよ。 (a)y=e^zとおき、微分方程式をzに関する微分方程式に書き換えよ。 (b)dz/dx=v とおき、(a)で得られた微分方程式をvについて解け。 (c)微分方程式(1)の一般解を求めよ。 (a) z''-2(z')^2-z'=0 (z'=dz/dx) (b) v=Ce^x/(1-2Ce^x) (c) y=C1・(1-C2e^x)^(-1/2) 特に(c)が自信がありません。。。
- ベストアンサー
- 数学・算数
- 次の連立微分方程式の一般解がわかりません。
次の連立微分方程式の一般解がわかりません。 dx/dt=x-2z dy/dt=2x-y-2z dz/dt=-2x+2y よろしくお願いします。
- ベストアンサー
- 数学・算数
- 未定係数法は一階の線形微分方程式にも使えるのでしょうか?
未定係数法は一階の線形微分方程式にも使えるのでしょうか? 一階の線形微分方程式の解き方は dy/dt + p(t)y = g(t) のとき e^∫p(t)dt を両辺にかけて そのあとで両辺を積分してyについて解く と習いました。 そして、未定係数法は2階の線形微分方程式を解く方法の一つとして、 習いました。 ここで疑問に思ったのが、 この未定係数法は一階の線形微分方程式にも使えるのでしょうか? だとしたら下のような手順でよいのでしょうか? 同次式: dy/dt + p(t)y = 0 の一般解を求める (積分定数が残る) 非同次式: dy/dt + p(t)y = g(t) の特殊解を求める (積分定数はない) yの一般解 = 同次式の一般解 + 特殊解 よろしくお願いします。
- ベストアンサー
- 数学・算数
質問者からのお礼
できました^^ありがとうございました。