• 締切済み
  • 困ってます

連立微分方程式

x=x(t), y=y(t)をtの関数として、次の連立微分方程式を考える。    dx/dt=2x+y dy/dt=x+2y (1)z=x+y, w=x-yとおいて、z,wについての微分方程式に書き換えなさい。 z,wを無視して解くことはできるのですが z=x+y, w=x-yに置き換えるということがよくわかりません。 初歩的な質問ですがよろしくお願いしますm(__)m

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.3
  • guuman
  • ベストアンサー率30% (100/331)

書き間違いの修正 A= [2 1] [1 2] P= [1 1] [1 -1] X= [x] [y] Z= [z] [w] とすると X’=A・X は Z=P・X によってX→Zに変数返還するとどうなるか補足にかけ

共感・感謝の気持ちを伝えよう!

  • 回答No.2
  • guuman
  • ベストアンサー率30% (100/331)

A= [2 1] [1 2] P= [1 1] [1 -1] X= [x] [y] Z= [1 1] [1 -1] とすると X’=A・X は Z=P・X によってX→Zに変数返還するとどうなるか補足にかけ

共感・感謝の気持ちを伝えよう!

  • 回答No.1

z=x+y, w=x-yならば、それらの和および差からz+w=2x, z-w=2yつまり、x=(z+w)/2, y=(z-w)/2を得ます。これを元の式に入れるだけではありませんか?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

返信ありがとうございます。 そうゆうことだったんですね! わかりました。。 どうもです。

関連するQ&A

  • 連立微分方程式

    x=x(t), y=y(t)をtの関数として、次の連立微分方程式を考える。    dx/dt=2x+y dy/dt=x+2y (1)z=x+y, w=x-yとおいて、z,wについての微分方程式に書き換えなさい。 z+w=2x, z-w=2yつまり、x=(z+w)/2, y=(z-w)/2 これを、x,yにするだけでよいのでしょうか?

  • 連立微分方程式

    点P(x,y)は連立微分方程式 dx/dt=y dy/dt=-x を満たすものとする。t=0で原点以外の点から出発した点P(x,y)は、tが増加するにつれてどのようにふるまうか述べよ。図を用いてもよい。 この問題の解き方がよく分かりません。 連立微分方程式について、色々な文献を見てみたのですが、どうもいまいちです。 上の連立方程式を2つともdt=のかたちにして、dx/y=dy/-xという式にし、変数を分離して両辺を積分して・・・すると、x^2+y^2=Cという式に なりました。 円の方程式っぽいです。 でも、tは消えてしまい・・・ よく分からなくなってきました。 そもそもここまでの解き方も自分は間違っているのでしょうか?? ご意見やヒント、解答ヨロシクお願いしますm(_ _)m

  • 連立微分方程式の解き方を教えてください.

    連立微分方程式の解き方を教えてください. 2d(^2)y/dt^2-dx/dt-4y = t 4dx/dt+2dy/dt-3x = 0 ヒントとしてtで一回微分するとよいとありました. まだ勉強を初めて間もないので,解法が本当にわかりません. お手数ですが,御教授よろしくお願いいたします.

  • 連立微分方程式

    連立微分方程式 dx/dt=5x+4y dy/dt=-x+y の一般解を求めて下さい。

  • 連立微分方程式

    連立微分方程式の問題です。 dx/dt = -3x+y dy/dt = 5x+y 回答お願いします。

  • 次の連立微分方程式の一般解がわかりません。

    次の連立微分方程式の一般解がわかりません。 dx/dt=x-2z dy/dt=2x-y-2z dz/dt=-2x+2y よろしくお願いします。

  • 図形と連立微分方程式の問題です。

    P(x.y) は連立微分方程式 (dx/dt)=y (dy/dt)=-x を満たすものとする。 t=0で原点以外の点から出発した点P(x、y)は、 tが増加するにつれてどのようにふるまう

  • 三元連立微分方程式の解き方教えてください。

    dx/dt=(A-C)/A*y*z dy/dt=((C-A)x-L)/A*z dz/dt=L/C*y この連立方程式なのですが,x,y,z以外は全て定数です。 まずは,ひとつの変数のみの方程式を作ろうと思いzだけの式を作りました。 z*z'''-z''*z'+((A-C)/A)^2*z^3*z'=0 という式になりました('は微分回数です。) そして更に左辺は(z*z'')のtで微分した形に近いんじゃないかと思い解いていったのですが・・・・ここらへんからもうさっぱりでどうすればよいのかわからなくなってしまいました。もしよろしければこういう三元の連立で変数がyzみたいに積の項がある方程式のよい解き方を教えてください。パソコンで計算してみたらx,yは円の運動をしました。

  • 微分方程式の質問です

    連立微分方程式の問題です dx/dt=-x+z dy/dt=-2x+y+z dz/dt=x-y+2zの一般解を求めろという問題です。 よろしくお願いします。

  • 連立常微分方程式の問題。。。

    手元の参考書などを調べても、連立された微分方程式について書いていなくて困っています。 以下の問題なのですが、どのように進めていけばよいのでしょうか?? ------------------------------------------------------- 問) dx/dt + 2x - 3y = exp(t) dy/dt - 3x + 2y = exp(2t) について、以下の問に答えなさい。 (1)x に関する2階の非同次常微分方程式を求めなさい。 (2)(1)を解き、x の一般解を求めなさい。 (3)(2)を用い、y の一般解を求めなさい。 -------------------------------------------------------- 基本的なものなのかもしれませんが、連立微分方程式について、 一般的にどのように取り組んだらよいのかわからず困っています。 お手数ですが、よろしくお願いします。