微分方程式の解き方

このQ&Aのポイント
  • 微分方程式の解き方を学ぶために、y" - 2y' + y = x sinxの一般解を求める問題と、変数分離法を使った(y^2)*((d^2)y/d(x^2)) = (dy / dx)^3の解法を考えます。
  • 問題1では、一つの解の予想の仕方が分からない状況です。問題2では、変数分離を用いて解を求めていますが、最終的な答えに間違いがあるかどうかも確認したいと思っています。
回答を見る
  • ベストアンサー

微分方程式の解き方

1.y" - 2y' + y = x sinxの一般解を求めよ。 この問題で、一つの解の予想の仕方が分かりません。 2.(y^2)*((d^2)y/d(x^2)) = (dy / dx)^3 dy/dx = p、((d^2)y/d(x^2)) = (dp / dy)p とおき、 y^2 * p *(dp /dy)= P^3 y^2 * (dp/dy) = P^2 変数分離をして 1/(p^2) dp = 1/(y^2) dy -(1/p) = -(1/y) + C 1/p = 1/y - C p = y - 1/C p=dy/dx = y + A (A = -1/Cとおく) 1/(y + A) dy = dx log|y + A| = x + B y + A =±e^(B + x) y = Ce^x - A となりましたが 答えはlog|y|=x + C1y + C2です。 間違っているところを指摘していただけるとありがたいです。

  • tki-
  • お礼率55% (88/160)

質問者が選んだベストアンサー

  • ベストアンサー
  • uuu-chan
  • ベストアンサー率25% (7/28)
回答No.1

1. y=Ax*sinx+Bx*cosx+C*sinx+D*cosxとおくと、 A=0,B=1/2,C=-1/2,D=1/2 になる。従って、 y=x/2*cosx-1/2*sinx+1/2*cosx 2. ((d^2)y/d(x^2)) = (dp / dy)pが間違っている。 正しくは、 ((d^2)y/d(x^2)) = d/dx(dy/dx)=d/dx(p)=dp/dx

tki-
質問者

お礼

ご指摘いただきありがとうございます。

関連するQ&A

  • 微分方程式

    (1+x^2)y"+1+(y')^2=0 解:Ax+(1+A^2)log(A-x)+B の解き方がわかりません。 dy/dx=Pとして (1+x^2)dp/dx+1+p^2=0 としたところ行き詰ってしまいました。 どなたかアドバイスお願いします。

  • 2階微分方程式について

    yy"+(y')^2+1=0 解:(x+A)^2+y^2=B^2 の解き方がわかりません。 dy/dx=pとして d^2y/dx^2=dp/dx=dy/dx・dp/dy=p(dp/dy) . yp(dp/dy)+p^2+1=0......(1)問題式にd^2y/dx^2、dy/dx=pを代入する。 p(dp/dy)+p^2/y+y.......(2)両辺に1/yをかける。 . ベルヌーイ形なので,u=p^2 (du/dy=2p・dp/dy)を代入して、 1/2du/dy+u/y=-y.....(3) . uとyの、線形微分方程式として解いて、 u=p^2=1/y^2(-1/2・y^4+C)......(4) . p=±1/y√(-1/2・y^4+C)........(5) この後(5)を積分して解が出ると思うのですが、 (それ以前に考え方自体が間違っているかもしれませんが) 右辺の積分の仕方がわからず解けなくて困っています。 どなたか教えてください

  • 再び微分方程式の質問(2)です。

    全くわからず手が付けられません。ご回答よろしくお願いいたします。 微分方程式 y’+2y(2乗)-2y=0 について問1~問3について答えよ。  問1 問題の微分方程式は変数分離型である。変数を分離した積分として、次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。  (1) ∫1/y(y-1)dy=∫2dx  (2) ∫1/y(1-y)dy=∫2dx  (3) ∫1/y(y+1)dy=∫2dx  (4) ∫1/y(y-1)dy=∫1/2dx  (5) (1)~(4)に正解はない。  問2 問題の微分方程式の解として、次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。  (1) 一般解y=1±√1-Ce(2x乗)/2 (Cは任意定数)  (2) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数)  (3) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数)と特異解y=1  (4) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数)と特異解y=0  (5) (1)~(4)に正解はない。  問3 問題の微分方程式の解y=y(x)で、y(0)=1/2をみたすものがy(x)=2/3となるxとして次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。  (1) 1/2log2  (2) 3/2  (3) log6  (4) 1/6  (5) (1)~(4)に正解はない。  以上、よろしくお願いいたします。

  • 微分方程式の問題(2階)

    yy"-(y')^2=y^2logy 解:logy=Ae^(x)+Be^(-x) が解けなくて困っています。 p=y'として、 d^2y/dx^2=dp/dx=dp/dy・dy/dx=p・dp/dy 問題式に代入して、 yp(dp/dy)-p^2=y^2logy.....(1) p(dp/dy)-p^2/y=ylogy......(2)1/yを両辺にかける pとyについてのベルヌーイ形なので u=p^2として du/dy=2p・dp/dy (2)に代入して、 1/2(du/dy)-u/y=ylogy.....(3) 線形微分方程式になるので、 u=exp^(-∫-2/y){∫exp^(-∫-2/y)・(2ylogy)+C}.....(4) これを解いていくと、 u=p^2=y^2{(logy)^2+C}.......(5) p=y√[(logy)^2+C].........(6) とってしまい、以降が解けません。 (解き方自体が間違っているかもしれません) どなたか教えてください。

  • 微分方程式の問題

    y'(y'")-(y")^2=0 解:Be^(Ax)+C の解き方なのですが、 y'=P y"=Q とおいて y"=dp/dx=dp/dy・dy/dx=dp/dy・P......(1) y"'=dQ/dx=dQ/dy・dy/dx=dQ/dy・P......(2) (1),(2)を元の式に代入して、 p(p・dQ/dy)-(p・dp/dy)^2=0...(3) dQ/dy-(dp/dy)^2=0..(4) と考えてみたのですが、行き詰ってしまいました。 どなたかアドバイスお願いします

  • 1階の微分方程式

    y'+(2x+1)y-y^2=x^2+x+1の一般解を求めよ。(y'はdy/dx)という問題なんですが、とりあえず=0のときの解、y'+y=y^2の解を求めたみました。変数分離で解はy-y^2=Ce^(-x)になりました。これを使ってなんとかできると思うんですが、わかりません。ヒントだけでも教えていたたきたいです。よろしくお願いします。

  • 微分方程式の問題について

    (y")^2+xy"-y'=0  一般解:y=Ax^2+4A^2x+B 特異解y=-x^3/12 の解き方がわかりません。 ほとんど解らないのと同じですが、 ・xを特殊解と推測 ・p=y'として、  (dp/dx)^2+x(dp/dx)-p=0  と変換する まではできました。 その後どのように考えれば解けるのでしょうか。

  • 初期条件のない微分方程式

    d^2y/dx^2 - 5dy/dx+6y=x^2 これの一般解を求めよ。特解はy=ax^2+bx+c (a、b、c)定数の形である。 このような問題を聞かれたのですが 「初期値」とか「条件」って(条件:x=0のとき、y=1, dy/dx=1 など)なくても解けるんですか? はじめて見たので「え!?」ってなってる形なんですけど どなたか解き方を教えてください。

  • 全微分方程式-合ってるかどうかみてください。

    不定積分型公式と定積分型公式のそれぞれで解きました。 自信がないので、合ってるかどうか確かめてください。 お願いします。 {y^2+(e^x)siny}dx+{2xy+(e^x)cosy}dy=0 解)不:xy^2+(e^x)siny=c 定:xy^2+siny(e^x+1)=c (y-x^2)dx+(x+y^2)dy=0 解)不:-x^3/3+xy+y^3/3=c 定:-x^3/3+xy+y^3/3=c {3(x^2)(y^2)+1/x}dx+(1/y)・{2(x^3)(y^2)-1}dy=0 解)不:x^3y^2+log|x/y|=c 定:x^3y^2+log|x/y|=c

  • p=dy/dxを使った微分方程式

    [p=dy/dxとして、 (1) y=2xp+p  解:4(y+x)^3=(2x^3+3xy+c)^2 特殊解:y=0 (2) xy=p+x 解:y=1+ce^(x^2/2) 特殊解=? の解き方が思いつきません。 xで微分したり、yで微分したりしましたが解くことができません。 どなたか考え方教えていただけませんか?