• ベストアンサー
  • すぐに回答を!

dy/dx (y+1)を積分して(y+1)^2?

次の微分方程式の一般解を求めよ。 (1+y) (d^2y)/(dx^2) + (dy/dx)^2 = 0 dy/dx = p とおくと、      (1+y)p (dp)/(dy) + p^2 = 0 となり、      (i) (1+y) (dp)/(dy) + p = 0      (ii) p = 0 の2通りが考えられる。 (i)の場合      1/p (dp)/(dy) + 1/(1+y) = 0 の両辺をyで積分して      log |p(y+1)| = C_1 つまり、      dy/dx (y+1) = C_1 両辺をxで積分して、      (y+1)^2 = C_1x + C_2     ←? という解を得る。 ・・・と本に書いてあります。しかし、 「両辺をxで積分して」の計算は間違ってないですか? 自分が計算すると、      dy/dx (y+1) = C_1      ∫ (y+1) dy/dx dx = C_1∫dx      ∫ (y+1) dy = C_1∫dx      ∫y dy + ∫1 dy = C_1∫dx      y^2/2 + y = C_1x + C_2 になります。 積分して(y+1)^2になるなら、元々は2(y+1)じゃないといけないですよね、きっと。 ということで、どなたか検算をお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数477
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

>1/p (dp)/(dy) + 1/(1+y) = 0 >の両辺をyで積分して >     log |p(y+1)| = C_1 >つまり、 >     dy/dx (y+1) = C_1 >両辺をxで積分して、 >     (y+1)^2 = C_1x + C_2     ←? >という解を得る。 上から3行目までは問題ありません.5行目はC_1の代わりに±e^{C_1}と書くべきです.それを改めてC_1とおいたのならそういうべきです.以下そうおいたとしましょう. ←?の式は左辺を(y+1)^2/2と書くべきです.以下そうしたとしましょう.すると, (y+1)^2 = 2C_1x + 2C_2 となります.もしここで2C_1,2C_2をそれぞれC_1,C_2と改めておいたとしましょう.すると, (y+1)^2 = C_1x + C_2 質問者様の計算では2C_1,2C_2+1をそれぞれ改めてC_1,C_2とおけば上の形になります. このように,積分定数は使った記号を使いまわすことも多いのです.しかし,その説明を怠るのはよくないと思います.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 > ←?の式は左辺を(y+1)^2/2と書くべきです. なるほど、1/2はC_1、C_2の藻屑と消えていったのですね。では、私の答えも合っていますね。 ありがとうございました!

関連するQ&A

  • dy/dx・dxは置換積分を使ってdy?

    次の微分方程式を解け 2yy'=1 とありました。解答は -------------------------------- 2y・dy/dx=1の両辺をxで微分して ∫2y (dy/dx) dx=∫dx 置換積分法により ∫2y dy=∫dx ゆえに y^2=x+C (Cは任意定数) -------------------------------- となっています。ここで疑問に思ったのが ”置換積分法により”という箇所です。 これはdy/dx・dxを”約分して”dyにしてはならず、 ”置換積分法により”dyにしなくてはならない、 ということが言いたいのだと解釈しました。 疑問1. そこで、ここにおける”置換積分”とは具体的には どのような作業を指すのでしょうか? 疑問2. 以下は全て同じことを表現したいと意図している のですが、誤解を招くことはないでしょうか? 2y・dy/dx・dx    2y (dy/dx)・dx   2y dy/dx dx 2ydy/dx dx 2y*dy/dx*dx 2yとdyの間に半角スペースを入れた方がよいか ・と*と半角スペースどれが妥当か dy/dxは()でくくるべきか などなどです。

  • 微分記号(dy/dx)について質問です。

    微分記号(dy/dx)について質問です。 例えば、 dy/dx=x という微分方程式を考えます。 両辺をxで積分すると、 ∫(dy/dx)dx = ∫x dx ・・・(1) となって ∫dy=∫x dx ・・・(2) ⇔ y = (1/2)x^2 + C (Cは積分定数)となります。 ここで質問です。(1)から(2)へ変形するときどうして、(dy/dx)dx = dx 、とできるのでしょうか? dy/dx は、分数じゃなくて記号だと習ったのに、あたかも普通の数字や文字であるかのように計算(約分)できるのはどうしてですか?形式的にしか理解していないのでその計算の意味を教えてください。 よろしくお願いします。

  • dy=dx

    こんにちは さっそく質問なのですが、 例えば、微分方程式や置換積分でdy/dx=1⇒dy=dxのような式変形を使いますよね。 が、このような変形をしていいのはなぜですか?

  • 積分計算がわかりません

    微分方程式の問題で (x+y)dy/dx=3x+3y+1 の一般解を求めたいのですが 自分がわかった部分は Y=x+y・・・(1)とおいて 両辺をxで微分して dY/dx=1+dy/dx・・・(2) となるので(1)(2)から dY/dx=(4Y+1)/Yになって Y/(4Y+1)dY=dx で両辺を積分すれば求まると思ったのですが 左辺の積分がうまく出来ません また、ここまでの式変形がすでに間違えているのでしょうか

  • 微分方程式の検算

    次の微分方程式の一般解を求めよ。 dy/dx = 1/(2y + x + 1) u = 2y + x + 1とおくと u' = 2y' + 1 これを用いると微分方程式は、 y' = 1/2 (u'-1) = 1/u すなわち、 ∫(u/u+2) du = ∫dx 積分を実行して u - 2 log |u + 2| = x + C であるから、求める解は 2y - log(2y + x + 3)^2 = C' ・・・と本には書いてあります。 しかし、 u - 2 log |u + 2| = x + C で、u = 2y + x + 1 と元に戻すと 2y + x + 1 - 2 log |2y + x + 1 + 2| = x + C 2y + 1 - 2 log |2y + x + 1 + 2| = C      ;x を消しました 2y + 1 - 2 log |2y + x + 3| = C 2y + 1 - log (2y + x + 3)^2 = C ・・・と、2y "+ 1" - log (2y + x + 3)^2 = Cになりませんか? CがC'になっているところを見ると、まさか+1がCに取り込まれてしまったんですか? 検算をお願いします。

  • 微分方程式に関する問題です。

    (x^2){(d^2)y/d(x^2)} - x(dy/dx) + y = x^3    (*) ********************************************************* (1)y = xφ(x)が微分方程式(*)の解であるとき、φのみたす微分方程式を求めよ。 ********************************************************* y = xφ(x)からy' , y''を計算して代入し、 φ''(x) = x/2 となりました。(答えの書き方はこれでいいのか分かりません。) ********************************************************* (2)φ'(x)を求めよ。 ********************************************************* (1)の答えの両辺を積分して φ'(x) = (x^2)/4 + C となりました。 ********************************************************* (3)微分方程式(*)の一般解を求めよ。 ********************************************************* (3)のとき方が分かりません。 どのようにして解いていけばいいのでしょうか? よろしくお願いします。

  • dxやdyの本当の意味は?

    宜しくお願いします。 昔、高校で dy/dyの記号を習いました。これは分数ではなくて一塊の記号なのだと習いました。 が、微分方程式ではdyとdxをばらばらにして解を求めたりします。 「両辺をdy倍して…」等々、、、 また、積分の置換積分では約分したりもしますよね。 結局、dy/dxは一塊ではないんですか??やはり分数なのですか? (何だか高校の数学では騙されてたような気がしてきました) 一塊の記号でないのなら分数っぽい記号ではなくもっと気の利いた記号にすればいい のにとも思ったりします。 実際の所、 dxの定義は何なんですか? dyの定義は何なのですか? 本当はdxとdyはばらばらにできるのですか? どなたかご教示いただけましたら幸いでございます。

  • 微分でd/dx (xp) = p+x dp/dx

    微分方程式 x (d^2 y/dx^2) + dy/dx = x^3 の一般解を求めよう。 dy/dx = p とおくと、微分方程式は次のようになる。      x dp/dx + p = x^3 積の微分により、      d/dx (xp) = p + x dp/dx     ← であるから、この微分方程式は次のように変形することができる。      d/dx (xp) = x^3 ・・・と続くのですが、この d/dx (xp) = p + x dp/dx はどうやって求めたのでしょうか? 積の微分というと、      (f*g)' = f'g + fg' ですよね? x dp/dx + p = x^3 にはそもそも掛けている要素が無いことないですか? dy/dx = p と置き換えをしているので、さらにややこしく思えます・・・。 どうか教えてください。お願いします。

  • 微分y*(dy/dx)+x-2y = 0について

    微分方程式について教えて下さい。 とある問題集があり、そこには最初の式と途中経過があるのですが 自分が試したところではどうしても結果が一致しませんでした。 問題は以下の通りです。 式中の y/x = u として進めていきます。 y*(dy/dx)+x-2y = 0       (1) -> 1+u(u+x*(du/dx)) = 2u    (2) -> ∫((u/(u-1)^2)du = ∫(-1/x)dx   (3) -> (u-1)x=C*e^(1/(u-1))      (4) (1)が最初の方程式、(4)が結果です。 自分でやると(2)のところでは 1+u(dy/dx) = 2u になります。 (2)から(3)への計算は出来ますが(3)から(4)では log(u-1)+u = -log(x)+C → log(u-1)x = C-u になり先に進めなくなります。 きっとどこかで勘違いしているのだと思うのですが、 何日かおいてみても間違いが分かりません。 どなたか、教えていただけないでしょうか。 よろしくお願いします。

  • 微分積分について

    微分積分初心者です。 dy/dx=5という微分方程式があって、これの両辺をxで積分すると ∫dy/dx・dx=∫5dx y=5x + C(Cは積分定数)というのはわかるのですが、 dxを右辺に持って行って、 dy=5dxとして両辺を積分する時は、左辺をyで積分、右辺をxで 積分ということになるのでしょうか? こういうことは可能なのでしょうか? また一階微分の時は右辺にdxを持っていくことができますが、 二階微分以上ではできないのはなぜでしょうか? よろしくお願い致します。