• ベストアンサー
  • 困ってます

微分方程式

次の、微分方程式の一般解を求めよ。 (1-4x-3y^2+12xy^2)dy/dx=4 この解き方教えてください。 答えは y-(2/3)y^2=-log(x-1/4)+C です

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数85
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

(1 - 4x)(1 - 3y^2)(dy/dx) = 4 ですね? まず、x ≠ 1/4 の範囲で解きます。 (1 - 3y^2)(dy/dx) = -1/(x - 1/4) の両辺を x で積分して、 y - y^3 = - log |x - 1/4| + C (C は任意定数) です。 この形の解は、x > 1/4 のものも、x < 1/4 のものも、 x = 1/4 と交わることがありません。 常に x = 1/4 であるような直線が解かどうかは、 式の解釈によって微妙です。 ここでは、dy/dx を字句通りに解釈して、 x = 1/4 は解でない…としておきます。 よって、解は、初期条件により、 y - y^3 = - log (x - 1/4) + C (C は任意定数) と y - y^3 = - log (- x + 1/4) + C (C は任意定数) の 二種類です。 答えを y - y^3 = - log |x - 1/4| + C のように書くと、 x の変域に関して、あらぬ誤解を誘導するので、 粗末な書き方は避けること。 書き方を工夫して x = 1/4 + A e^(y^3 - y) (A は 0 でない定数) とすれば、 解を二種類に区別することなく書くことができます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

難しいですけど、なんとか理解できました。ありがとうございます

関連するQ&A

  • 微分方程式の解き方が分からず、困っています。

     現在、試験に向けて微分方程式の勉強をしているのですが、下記の問題の解き方が分かりません。  教科書を参考に(1)は変数分離系、(2)は同次形、(3)は線形で解こうとしましたが、どの問題も積分するところで複雑な式になってしまい、解けれません。  分かる問題だけでも良いのでアドバイス、解き方を教えてください。よろしくお願いします。     (1)次の微分方程式の一般解を求めよ dy/dx=y^2+1 (2)次の微分方程式の一般解を求めよ y'=(y/x)(log(y/x)+1) (3)次の微分方程式の解でt=0のときx=1の条件を満たすものを求めよ x'cost+xsint=1

  • 微分方程式の問題です。

    微分方程式の問題です。 微分方程式の問題で、 (d^2y)/(dx^2)+(tanx)*{(dy)/(dx)}+(cos^2x)*y=0 の一般解を求めよという問題なのですが、解き方が分からず困っています>< 解法が分かる方がいれば、解法を教えていただけないでしょうか? よろしくお願いします!!

  • 微分方程式

    微分方程式 dy/dx-2xy=2xy~2 について。 (1)z=1/yとするとき、z=z(x)が満たす微分方程式を求めよ (2)(1)で求めたzに対する微分方程式の一般解を求めよ (3)yの一般解および特殊解を求めよ という問題があります。 これは教科書にあるような、微分方程式の公式を用いて解くのでしょうか よく分からないので詳しく教えてください。

その他の回答 (1)

  • 回答No.1

左辺の括弧の中を因数分解します。xを含む項と含まない項に分ければ簡単にできます。 後は左辺をyだけの、右辺をxだけの式に変形し積分する、それだけです。 それと多分答えは違います。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 微分方程式

    第1問 dy   y~2-x~2 --=--------- (ヒントz=y/xと置換しなさい) dx    2xy 第2問 一階線形微分方程式  dy --+ycosx=sinx×cosx---(1)がある dx 1、この方程式の同次の微分方程式を解きなさい 2、定数変化法により、この微分方程式(1)の特解を求めなさい。 また、その時の一般解を求めなさい

  • 微分方程式

    dy/dx-2*x^2*e^x*y+e^x*y^2=2*x-x^4*e^x に対しての次の問のとき方について教えてください (1)x^a が微分方程式の解となるように実数aを求めよ (2) a を(1)で求めたものとする。y=x^a+zを微分方程式に代入して,zの満たす微分方程式を求めよ。 (3)(2)で求めたzの微分方程式を解いて,もとの微分方程式の解yを求めよ (1)についてはa=2という答えだと思うのですが,(2)以降の解き方の手順がわかりません。解法がわかるのであればよろしくおねがいします。

  • 微分方程式について

    次のような微分方程式があります d^2 x/dx^2 - (dy/dx)(4+x)/x +y*(6+2x)/x^2 =0 問題は以下です y=ux^2(uはxの関数)がこの微分方程式の解となるために uの満たすべき微分方程式を求めなさい。 要は u''=u'=u になればいいということじゃないのでしょうか ですがこれだと微分方程式になりません もしくはこれが解答でいいのでしょうか? ヒントのみでもいいので教えてください。

  • 微分方程式の問題で

    微分方程式の問題で 「a,bが任意定数のとき、次式が一般解になるような最小階数の微分方程式を示せ。  y = ax^2 + 2bx」 の答えがわかりません。 答えは一階の微分方程式で (dy/dx) + y = ax^2 + 2(a+b)x +2b となるのか 二階での微分方程式で x^2 * y" - 2xy' +2y = 0 となるのかで迷っていて、 一階の微分方程式が特殊解なのか一般解なのかの判断がつかないと言う状況です。 というのも教科書には 「限定状況を与えなければn階の微分方程式にはn個の任意定数を含む」 とあるのですがこの限定条件がわからなくて判断がつきません。 どちらが正しいのでしょうか?

  • 微分方程式に関する問題です。

    (x^2){(d^2)y/d(x^2)} - x(dy/dx) + y = x^3    (*) ********************************************************* (1)y = xφ(x)が微分方程式(*)の解であるとき、φのみたす微分方程式を求めよ。 ********************************************************* y = xφ(x)からy' , y''を計算して代入し、 φ''(x) = x/2 となりました。(答えの書き方はこれでいいのか分かりません。) ********************************************************* (2)φ'(x)を求めよ。 ********************************************************* (1)の答えの両辺を積分して φ'(x) = (x^2)/4 + C となりました。 ********************************************************* (3)微分方程式(*)の一般解を求めよ。 ********************************************************* (3)のとき方が分かりません。 どのようにして解いていけばいいのでしょうか? よろしくお願いします。

  • 微分方程式の問題(4問)がわからないので教えていた

    微分方程式の問題(4問)がわからないので教えていただきたいです。できれば途中式、解説などもお願いいたします 【1】、【2】微分方程式の一般解を求めよ 【1】 dy/dx+(x-2)/y=0 【2】 dy/dx+1/x*y(x)=e^2x 【3】、【4】微分方程式を求めよ 【3】 d^2y/dt^2 + dy/dt - 2y(t) = sin t 【y(0)=0、 y'(0)=0】 【4】 dq(t)/dt + q(t)/RC = sin 2t 【q(0)=0】

  • 再び微分方程式の質問(2)です。

    全くわからず手が付けられません。ご回答よろしくお願いいたします。 微分方程式 y’+2y(2乗)-2y=0 について問1~問3について答えよ。  問1 問題の微分方程式は変数分離型である。変数を分離した積分として、次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。  (1) ∫1/y(y-1)dy=∫2dx  (2) ∫1/y(1-y)dy=∫2dx  (3) ∫1/y(y+1)dy=∫2dx  (4) ∫1/y(y-1)dy=∫1/2dx  (5) (1)~(4)に正解はない。  問2 問題の微分方程式の解として、次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。  (1) 一般解y=1±√1-Ce(2x乗)/2 (Cは任意定数)  (2) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数)  (3) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数)と特異解y=1  (4) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数)と特異解y=0  (5) (1)~(4)に正解はない。  問3 問題の微分方程式の解y=y(x)で、y(0)=1/2をみたすものがy(x)=2/3となるxとして次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。  (1) 1/2log2  (2) 3/2  (3) log6  (4) 1/6  (5) (1)~(4)に正解はない。  以上、よろしくお願いいたします。

  • 微分方程式の検算

    次の微分方程式の一般解を求めよ。 dy/dx = 1/(2y + x + 1) u = 2y + x + 1とおくと u' = 2y' + 1 これを用いると微分方程式は、 y' = 1/2 (u'-1) = 1/u すなわち、 ∫(u/u+2) du = ∫dx 積分を実行して u - 2 log |u + 2| = x + C であるから、求める解は 2y - log(2y + x + 3)^2 = C' ・・・と本には書いてあります。 しかし、 u - 2 log |u + 2| = x + C で、u = 2y + x + 1 と元に戻すと 2y + x + 1 - 2 log |2y + x + 1 + 2| = x + C 2y + 1 - 2 log |2y + x + 1 + 2| = C      ;x を消しました 2y + 1 - 2 log |2y + x + 3| = C 2y + 1 - log (2y + x + 3)^2 = C ・・・と、2y "+ 1" - log (2y + x + 3)^2 = Cになりませんか? CがC'になっているところを見ると、まさか+1がCに取り込まれてしまったんですか? 検算をお願いします。

  • 微分方程式

    次の同時形微分方程式の一般解をもとめなさい。 dy/dx=(2x-y)/(x+y) 途中のxu'=(2-2u-u^2)/(1+u)まできたのですが そのあとが混乱してしまします。 どなたそのあとの導き方かお願いしますm(__)m

  • 微分方程式

    dy/dx = 2xの微分方程式を解くと 1/y dy = 2x dx log|y| = x^2 + c |y| = e^(2+c) y = ±e^(2+c) となると思うのですが、±ではなく+だけではないのかといわれたのですがその理由がわからないのですがどうなのでしょうか? もしよろしければよろしくお願いします。

専門家に質問してみよう