• ベストアンサー
  • 困ってます

微分方程式の問題

関数y=f(x)が微分方程式 y(d²y/dx²)-(dy/dx)²+y²=0 を満たすとき、この微分方程式の一般解はどうなりますか?

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数122
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

y(d^2y/dx^2)-(dy/dx)^2+y^2=0 ↓d^2y/dx^2=y",dy/dx=y'とすると yy"-(y')^2=-y^2 ↓両辺をy^2で割ると y"/y-(y'/y)^2=-1 ↓(y'/y)'=(y"/y)-(y'/y)^2だから (y'/y)'=-1 ↓両辺を積分すると(積分定数をBとする) y'/y=-x+B ↓両辺を積分すると(積分定数をcとする) log|y|=-(1/2)x^2+Bx+c ↓logの定義から |y|=e^{-(1/2)x^2+Bx+c} |y|=e^{-(1/2)x^2+Bx}(e^c) |y|=(e^c)e^{-(1/2)x^2+Bx} y=(±e^c)e^{-(1/2)x^2+Bx} ↓A=±e^cとすると ∴ y=Ae^{-(1/2)x^2+Bx}

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 微分方程式に関する問題です。

     dy/dx = (a+by)(c(x)+d(x)y) ここで、a,bは定数、c(x),d(x)はxの区間Iで連続とする。 (1)この微分方程式は、変数変換y = 1/b(1/z - a)により次の線形微分方程式に変換されるという。 dz/dx = f(x)z + g(x) をf(x),g(x)をa,b,c(x),d(x)を用いて表せ。 (2)a = b = 1,c(x) = x + 2/x , d(x) = xとするとき、微分方程式の一般解を求めよ。 途中の計算などもできれば詳しくお願いします。

  • 微分方程式

    微分方程式 dy/dx-2xy=2xy~2 について。 (1)z=1/yとするとき、z=z(x)が満たす微分方程式を求めよ (2)(1)で求めたzに対する微分方程式の一般解を求めよ (3)yの一般解および特殊解を求めよ という問題があります。 これは教科書にあるような、微分方程式の公式を用いて解くのでしょうか よく分からないので詳しく教えてください。

  • 微分方程式について

    次のような微分方程式があります d^2 x/dx^2 - (dy/dx)(4+x)/x +y*(6+2x)/x^2 =0 問題は以下です y=ux^2(uはxの関数)がこの微分方程式の解となるために uの満たすべき微分方程式を求めなさい。 要は u''=u'=u になればいいということじゃないのでしょうか ですがこれだと微分方程式になりません もしくはこれが解答でいいのでしょうか? ヒントのみでもいいので教えてください。

その他の回答 (1)

  • 回答No.2

y≠0 のとき与式は、 {y'/y}'=-1 となるから、 y'/y=-x+C, さらに積分して、 ln|y|=-x^2/2+Cx+D より、 y=A*e^(-x^2/2+Cx). これは、y=0 も含んでいます。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 微分方程式について

    微分方程式について。 yやdy/dxの形ならば解けるのですが ちょっと変わった形になると解けずに困っております。 回答お願いします。 1 未知関数x(t),y(t)に関する微分方程式 x´(t)=y(t), y´(t)=-x(t)を 初期条件x(0)=a, y(0)=bの下で解け。 2 x=x(t)を変数tのC^∞級関数とする。 このとき、 d^2x/dt^2 +(dx/dt)^2 -4=0 を解け。 3 tの関数x(t)が次の微分方程式を満たすとする x´+x^2+a(t)x+b(t)=0 ただしx´=dx/dtである。 ・x(t)=u´(t)/u(t)のとき、関数u(t)の満たす微分方程式を求めよ。 ・微分方程式 x´=x(1-x)の一般解を求めよ。 長いですが回答お願いします

  • 微分方程式

    第1問 dy   y~2-x~2 --=--------- (ヒントz=y/xと置換しなさい) dx    2xy 第2問 一階線形微分方程式  dy --+ycosx=sinx×cosx---(1)がある dx 1、この方程式の同次の微分方程式を解きなさい 2、定数変化法により、この微分方程式(1)の特解を求めなさい。 また、その時の一般解を求めなさい

  • 微分方程式に関する問題です。

    (x^2){(d^2)y/d(x^2)} - x(dy/dx) + y = x^3    (*) ********************************************************* (1)y = xφ(x)が微分方程式(*)の解であるとき、φのみたす微分方程式を求めよ。 ********************************************************* y = xφ(x)からy' , y''を計算して代入し、 φ''(x) = x/2 となりました。(答えの書き方はこれでいいのか分かりません。) ********************************************************* (2)φ'(x)を求めよ。 ********************************************************* (1)の答えの両辺を積分して φ'(x) = (x^2)/4 + C となりました。 ********************************************************* (3)微分方程式(*)の一般解を求めよ。 ********************************************************* (3)のとき方が分かりません。 どのようにして解いていけばいいのでしょうか? よろしくお願いします。

  • 微分方程式の問題(4問)がわからないので教えていた

    微分方程式の問題(4問)がわからないので教えていただきたいです。できれば途中式、解説などもお願いいたします 【1】、【2】微分方程式の一般解を求めよ 【1】 dy/dx+(x-2)/y=0 【2】 dy/dx+1/x*y(x)=e^2x 【3】、【4】微分方程式を求めよ 【3】 d^2y/dt^2 + dy/dt - 2y(t) = sin t 【y(0)=0、 y'(0)=0】 【4】 dq(t)/dt + q(t)/RC = sin 2t 【q(0)=0】

  • 微分方程式の一般解を求めたいです。

    dy/dx = (a+by)(c(x)+d(x)y) ここで、a,bは定数、c(x),d(x)はxの区間Iで連続とする。 (1)この微分方程式は、変数変換y = 1/b(1/z - a)により次の線形微分方程式に変換されるという。 dz/dx = f(x)z + g(x) をf(x),g(x)をa,b,c(x),d(x)を用いて表せ。 ********************************************* これはf(x) = ad(x) - bc(x) g(x) = -d(x) として答えがでました。 ********************************************* (2)a = b = 1,c(x) = x + 2/x , d(x) = xとするとき、微分方程式の一般解を求めよ。 dz/dx = -2z/x -x という式になると思うんですけど一般解をどう導き出していいのか分かりません。よろしくお願いします。

  • 微分方程式の問題です。

    微分方程式の問題です。 微分方程式の問題で、 (d^2y)/(dx^2)+(tanx)*{(dy)/(dx)}+(cos^2x)*y=0 の一般解を求めよという問題なのですが、解き方が分からず困っています>< 解法が分かる方がいれば、解法を教えていただけないでしょうか? よろしくお願いします!!

  • 微分方程式の問題

    問題 x^2 * d^2y/dx^2 - 3x * dy/dx + 3y = 0 この微分方程式に y = f(x) * x^3 を代入して、基本解を求めよ。 代入すると x * d^2f(x)/dx^2 +3df(x)/dx = 0 になりました。 どなたかここからの解答(解き方)をご教授ください

  • 微分方程式

    (y+3x)dX+(x+1)dy=0 この微分方程式の一般解を求めたいのですか、(y+3x)dXはyがあるので積分できないし、(x+1)dyはxがあるので積分できないです。どのように解けばいいですか?

  • 微分方程式の解法について・・・・

     一次微分方程式では「y=ux」とおき、一般解などを求めていくものが多いように感じられるのですが、 以下のような問題を解くためにはどのように進めていけばいいのでしょうか? 以下の微分方程式の一般解を求めよ。また、u = 2y^2-6yとおくこと。    dy/dx = -(2y^2-6y+4)/x(2y-3) 自分なりに du/dx = du/dy * dy/dx = ~ とし一般解を求めようと努力したのですが、どうしても途中で詰まってしまいます。 どなたか、お力をお貸しください。 また、最後に見難い記述しか出来ないことと、一方的な要望となってしまっていることをお詫び申し上げます

  • 微分方程式の解法について・・・

     一次微分方程式では「y=ux」とおき、一般解などを求めていくものが多いように感じられるのですが、 以下のような問題を解くためにはどのように進めていけばいいのでしょうか? 以下の微分方程式の一般解を求めよ。また、u = 2y^2-6yとおくこと。    dy/dx = -(2y^2-6y+4)/x(2y-3) 自分なりに du/dx = du/dy * dy/dx = ~ とし一般解を求めようと努力したのですが、どうしても途中で詰まってしまいます。 どなたか、お力をお貸しください。 また、最後に見難い記述しか出来ないことと、一方的な要望となってしまっていることをお詫び申し上げます

専門家に質問してみよう