- 締切済み
微分方程式に関する問題です。
(dy/dx)^2 + 2(ytan(x))dy/dx = f(y) (*) (1)f(y) = 0 とする。y = (cos x)^2 は、方程式(x)の一つの解である事を証明せよ。 (2)因数分解を用いて、f(y) = 0のときの一般解を求めよ。 ********************************************* という問題です。 (1)についてはできましたが、(2)でどのように解けばよいのか分かりません。お願いします。
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- Tacosan
- ベストアンサー率23% (3656/15482)
回答No.1
微妙なところはあるけど (dy/dx) (dy/dx + 2ytan x) = 0 とか?