• ベストアンサー
  • すぐに回答を!

高校数学 積分

∫-1→1 (x+2)log(x+2)dx という問題で、部分積分法で解くのに、解答はx+2を積分して(x+2)^2としています。確かにこれだと、処理が簡単なのですが、1/2x^2+2xとしても微分するとx+2になるのですが、これで計算すると、(面倒くさいやり方ですが)答えが合いません。積分定数はなんでもよいのではないのでしょうか?わかりにくい説明ですみませんが、どなたかわかる方、お知恵を貸してください。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数80
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

 (x+2)の積分を (1/2)(x+2)^2 としても (1/2)x^2+2x としても同じ結果が得られますよ。  ∫-1→1 (x+2)log(x+2)dx =[(1/2)(x+2)^2 log(x+2)](-1→1) -(1/2)∫-1→1 (x+2)dx =(9/2)log(3) -2  ∫-1→1 (x+2)log(x+2)dx =[{(1/2)x^2+2x} log(x+2)](-1→1) -∫-1→1 {(1/2)x^2+2x}/(x+2)dx =[{(1/2)x^2+2x} log(x+2)](-1→1) -(1/2)∫-1→1 {(x+2)^2-4}/(x+2)dx =[{(1/2)x^2+2x} log(x+2)](-1→1) -(1/2)∫-1→1 {(x+2)-4/(x+2)}dx =(5/2)log(3) -2 +2log(3) =(9/2)log(3) -2  以上のように同じになります。  試しに、(x+2)の積分を (1/2)x^2+2x+C (C:定数) として部分積分を行ってみてください。Cが消えて同じ結果が得られますよ。  ∫-1→1 (x+2)log(x+2)dx =[{(1/2)x^2+2x+C} log(x+2)](-1→1) -∫-1→1 {(1/2)x^2+2x+C}/(x+2)dx =[{(1/2)x^2+2x+C} log(x+2)](-1→1) -(1/2)∫-1→1 {(x+2)-2(2-C)/(x+2)}dx =(5/2+C)log(3) -2 +(2-C)log(3) =(9/2)log(3) -2

共感・感謝の気持ちを伝えよう!

質問者からのお礼

お忙しい所、詳しく計算していただき、大変助かりました。自分がどこでつまずいていたか、よくわかりました!本当にありがとうございました。また、私で役に立つことがあれば(多分、なさそう・・汗)是非、力になりたいです。感謝です!

関連するQ&A

  • 数(3)・不定積分 : log(x+2)、log(1-x)の積分の仕方

    数(3)の不定積分で「log(x+2)」「log(1-x)」(どちらも底はeです)の積分をやったのですが、授業で理解しきれなかった事があります。 最初の問題は部分積分法の公式を使うと ∫log(x+2)=log(x+2)・x-∫1/(x+2)・xdx …(1)となり、 解答は log(x+2)・x-x+2log|x+2|+C (Cは積分定数) となるのですが、(1)式の右辺、「∫1/(x+2)・xdx」の部分を、何故、それぞれを約分して「∫1dx+∫1/2xdx」としてはいけないのかが判りません。 次の問題は、上と同じようにして部分積分法の公式を使うと ∫log(1-x)=log(1-x)・x+∫x/(1-x)dx …(2)となり、 解答は x・log(1-x)-x-log|1-x|+C(Cは積分定数) となるのですが、ここで、(2)式の右辺、∫x/(1-x)dxの部分を、部分分数に分けて∫{-1+1/(1-x)}にするのですが(今の式の『-1』は、(1-x)で割られない、普通の-1です)、そういう風に変形する意味が分かりません。 分かる方が居ましたら、教えて下さると嬉しいです!

  • 不定積分の問題について

    写真の問題が検算すると間違っているようですが、積分が違うのか微分が違うのかわかりません。どこが間違っていますか? 問題は、 ∫(2x^4 - 3x^3 + 2x^2 - 3x - 2)/(x^3 - x^2 + x - 1) dx です。 計算すると、答えが x^2 - x + log((x^2 + 1)^(1/2)/(x - 1)^2) + arctanx + C(積分定数) になりました。 でもこれを微分すると (2x^4 - 3x^3 + 2x^2 -2x -2)/(x^3 - x^2 + x - 1) になります。 問題では分子のxの係数は-3だけど計算では-2になってしまいます。

  • 定積分の問題です

    解答したものの自信がないので すみませんが、わかる方、これでいいか教えてください。 (1)∫{1→2}(2x-3)^3dx 2x-1=tとおく。 dt/dx=2→dx=dt/2 x │1→3 ─┼─── t │1→3 (原式)∫{1→3}t^3*(dt/2)=1/2[t^4/4]{1→3} =1/2(81/4-1/4)=10 (2)∫1/(x(x+1)=log(x)-log(x+1)+C (Cは積分定数)

その他の回答 (1)

  • 回答No.1
  • postro
  • ベストアンサー率43% (156/357)

矛盾なく計算していれば、必ず合うはずです。 合わないならどこかに計算間違いがあるはずです。 捕捉に計算内容を書いていただければチェックできるかもしれません。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

必ず合うと言われ、自信が湧いてきて、落ち着いて計算しなおしたら、合いました!チェックまでしていただけるなんて、言っていただき、本当に嬉しかったです!見ず知らずの私に親切に指導していただいた事、深くお礼を述べたいです。ありがとうございました!

関連するQ&A

  • 積分の答えについて

    ∫(3x-5)/(x-2)dxの答え方なのですが、3(x-2)+log|x-2|+C C:積分定数とするか3(x-2)を展開して6も積分定数に含め3x+log|x-2|+Cとするのかで迷っています。 どちらの答えでもない可能性もありますが... 回答よろしくお願いします。

  • 不定積分の問題です

    ∫(x^4 + x + 1)/(x^3 - 2x^2 + x)dx の答えは 1/2x^2 + 2x + log(x-1)/x + 1/(x-1) + C(積分定数) で、合っていますか?

  • 定積分の問題

    ∫(0から2){x/(3-x)^2}dxの定積分を求めよ。という問題なんですが、友達にヒントをもらい、部分積分法を使って解いてみました。 ∫(0から2){x(3-x)^-2}dx =[x(3-x)^-2](0から2)-∫(0から2){(3-x)^-2}dx =・・・ と計算していって答えは2-log3になったのですが、どこか物足りないような気がします。こんな単純な計算でいいのでしょうか? 部分積分法なら、最初に何を微分したものかを考えると思うのですが、友達に聞いたところ、これで合ってると言われました。 もしこのやり方が間違っていたら、解法を詳しく教えてください。お願いします。

  • 不定積分について

    大学一年の者です。問題に略解しかついていない某微分積分の教科書に記載されている問題なのですが、途中式がよくわからない問題があるので、質問させて頂きました。 ∫ dx/x(1+x^2)^2 なのですが、 ∫ dx/(1+x^2)^2 を積分して (x/1+x^2 + arctanx)/2 となり、これを用いて、部分積分による方法で解こうとしたのですが上手く解けません。ちなみにarctanxはアークタンジェントxのことです。  略解は   1/2(1+x^2) + log(x^2/1+x^2)/2 + C(積分定数) となっております。

  • 数学

    数学 数IIIについての質問です ∫(sin2x・cosx)dx の不定積分の答えが(-2/3)cos^3x+C(Cは積分定数)になってしまいました sin2xを2sinx・cosxにしてから解いたのですがテキストには(-1/3)(sinx・sin2x+2cosx・cos2x)+C(Cは積分定数)とありました 和積を使った・・・のかな? 僕の解答でも入試でOKなのでしょうか? またテキストの解答のようになる途中式をおしえてください;;

  • 数学 積分法

    数学でわからない問題があります。 cos^3xsinxを積分したいのですが、うまくいきません。 私が考えたのはこういうものです。 sinx=tとおく。cosxdx=dt cos^3xsinx=cos^2xcosxsinx また、cos^2x=1-sin2xより ∮cos^3xsinx dx=∮(1-t^2)t dtとなる。 よって1/2t^2-1/4t^4+Cより 1/2sin^2x-1/4sin^4x+C (Cは積分定数) こうしたのですが違いました。 cosx=tとすると解答と一致し、 -1/4cos^4x+C となりました。 sinx=tのやり方のどこが間違っているのかわかりません。 教えてください。

  • 不定積分について

    大学の微分積分でてきた問題(答えが無い) で(2X+3)/X^2+9を不定積分しろとあったのですが 分子が分母を微分した結果にならないからlogで積分できないし 部分分数にすることもできずまた分子を分母でわることもできず 積分ができなくて困っています それと(X-1)log(X+1)dxの不定積分とe^2xcosxdxの不定積分を 部分積分法を使ってやってみたのですが何回くりかえしても 式が展開されるだけで困っています

  • 不定積分の問題

    (1)∫dx/{(2x+1)√(1-x^2)} (2)∫√(x^2+2x+2)dx/x という問題です。解答と自分の答えが合わず、どこがまちがっているのか分かりません。指摘していただけないでしょうか。よろしくお願いします。 (1)t=√{(1+x)/(1-x)}とおく。 dt=1/(1-x)^2*√{(1-x)/(1+x)}dx 与式=∫1/{(2x+1)√(1-x^2)}*(1-x)^2√{(1+x)/(1-x)}dt =∫(1-x)/(2x+1)dt =2/3∫1/(t^2-1)dt ここからどうしたらいいのか分からなくなってしまいました。 また、解答は1/√3*log{(x+1/2)/(x+2+√(3-3x^2))}となっているのですがどうしてこうなるのかさっぱりです。 (2)t=√(x^2+2x+2)+xとおく。 dt={(x+1)/√(x^2+2x+2)+1}dx =(t+1)/√(x^2+2x+2)dx 与式=∫(x^2+2x+2)/x(t+1)dt ここから分かりません。 解答はarcsinh(x+1)+√2log{x/(x+2+√(2x^2+4x+4))+√(x^2+2x+2)}となっています。 解答までの導き方も合わせて教えていただけると助かります。 略解しかなく、本当に困っています。 どうかよろしくお願いします。

  • 不定積分が解答と一致しません

    √{(x-1)/(2-x)}を積分せよ。という問題の答えが解答と一致しません √(2-x)=tと置いてx=2-t^2,dx==-2tdt  ∫√{(x-1)/(2-x)}dx =∫√(1-t^2)(-2tdt)/t =-2∫√(1-t^2)dt [∫√(1-t^2)dt]の部分は公式を使ったり、部分積分を用いたりして[{t√(1-t^2)+arcsint}/2](ここでは積分定数を省略) よって-√(x-1)(2-x)-arcsin√(2-x)+C(C:積分定数)だと思ったのですが、解答には arctan√{(x-1)/(2-x)}-√(x-1)(2-x)+Cとあります。 -√(x-1)(2-x)-arcsin√(2-x)+Cという答えはあっていますか?

  • 微分方程式

    6x-2y-7=(3x-y+4)y' という微分方程式を解いています. 模範解答では, 3x-y+4=uと置くと3-y'=u'であるから 2u-15=u(3-u') すなわち uu'/(u+15)=1 となる.ゆえに, u-15log|u+15=x+C1 (C1は積分定数) u=3x-y+4を代入して, 2x-y-15log|3x-y+19|=C. となっていました.自分は, X=x+α,Y=y+βと置き, y'=(6x-2y-7)/(3x-y+4)=(6X-2Y)/(3X-Y) となるようにα,βを決める. dy/dx=dY/dXであるから dY/dX=(6X-2Y)/(3X-Y)=2 となる ゆえにY=2X+C. X=x+α,Y=y+β を代入して (y+β)=2(x+α)+C. と考えたのですが,どこがおかしいのでしょうか?