• ベストアンサー
  • すぐに回答を!

積分の答えについて

∫(3x-5)/(x-2)dxの答え方なのですが、3(x-2)+log|x-2|+C C:積分定数とするか3(x-2)を展開して6も積分定数に含め3x+log|x-2|+Cとするのかで迷っています。 どちらの答えでもない可能性もありますが... 回答よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数315
  • ありがとう数6

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • info222_
  • ベストアンサー率61% (1050/1703)

>3(x-2)+log|x-2|+C (C:積分定数)とするか 3(x-2)を展開して6も積分定数に含め3x+log|x-2|+Cとするのかで迷っています。 どちらでも合っていますが、 どちらかといえば、定数の6は任意定数Cに含めて、最終的な答えとして 3x+log|x-2|+C を採用した方がよいかと思います。 かといって、3(x-2)+log|x-2|+C がまちがいというわけではありません。計算の流れで導出された式なので正解の答えとしても支障ありません。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。これからもよろしくお願いします。

関連するQ&A

  • どうしても答えが合わないのですが

    ∫(X+2/2X-5)dXという問題があるのですが、答えがX/2+9/4log|2X-5|+Cとあります。私の計算では、左の回答に-5/4が入るのですがこれって積分定数に含まれちゃってんですか? それとも根本的にまちがっていたら誰か教えてください。

  • 積分のある公式について

    ∫1 / (x^2 + y^2) dx = log (x + (x^2 + y^2)^1/2 ) + C [Cは積分定数] という公式がありますが、 ∫1/ (x^2 + y^2 ) dx = (x^2 + y^2)^(1 - 1/2) * x^(1 + 2) /1 + 2 + C = (x^2 + y^2)^1/2 * x^3 / 3 + C [Cは積分定数] はいけないのでしょうか。 理由を詳しく教えていただければうれしいです。

  • 数(3)・不定積分 : log(x+2)、log(1-x)の積分の仕方

    数(3)の不定積分で「log(x+2)」「log(1-x)」(どちらも底はeです)の積分をやったのですが、授業で理解しきれなかった事があります。 最初の問題は部分積分法の公式を使うと ∫log(x+2)=log(x+2)・x-∫1/(x+2)・xdx …(1)となり、 解答は log(x+2)・x-x+2log|x+2|+C (Cは積分定数) となるのですが、(1)式の右辺、「∫1/(x+2)・xdx」の部分を、何故、それぞれを約分して「∫1dx+∫1/2xdx」としてはいけないのかが判りません。 次の問題は、上と同じようにして部分積分法の公式を使うと ∫log(1-x)=log(1-x)・x+∫x/(1-x)dx …(2)となり、 解答は x・log(1-x)-x-log|1-x|+C(Cは積分定数) となるのですが、ここで、(2)式の右辺、∫x/(1-x)dxの部分を、部分分数に分けて∫{-1+1/(1-x)}にするのですが(今の式の『-1』は、(1-x)で割られない、普通の-1です)、そういう風に変形する意味が分かりません。 分かる方が居ましたら、教えて下さると嬉しいです!

その他の回答 (2)

  • 回答No.3
noname#212313

> ∫(3x-5)/(x-2)dxの答え方なのですが、3(x-2)+log|x-2|+C C:積分定数とするか3(x-2)を展開して6も積分定数に含め3x+log|x-2|+Cとするのかで迷っています。  どちらでもいいということは自明といっていいでしょう。  どちらにするかは、xかx-2か、という点でしょうね。xに関する式と見て、単純さを求めるなら、3x+log|x-2|+Cでしょう。この後、x>2と2<xに場合分けして対数部分を単純化することも考えられます。  しかし、y=x-2と変数変換することを考える、つまり3(x-2)+log|x-2|+C=3y)+log|y|+Cとするほうが都合がよさそうなら、3(x-2)+log|x-2|+Cが適します。  等価な式は何を解くかの目的に応じて選べばよいのです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。これからもよろしくお願いします。

  • 回答No.1

∫(3x-5)/(x-2)dx =∫{3(x-2)+1}/(x-2)dx =∫[3+{1/(x-2)}]dx =3x+log│x-2│+C (C は積分定数) と、 私は、 x-2 で約分してから積分します。(2行目から3行目) 計算の結果から出た式であれば、気にすることはないのでは?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。これからもよろしくお願いします。

関連するQ&A

  • 定積分の問題です

    解答したものの自信がないので すみませんが、わかる方、これでいいか教えてください。 (1)∫{1→2}(2x-3)^3dx 2x-1=tとおく。 dt/dx=2→dx=dt/2 x │1→3 ─┼─── t │1→3 (原式)∫{1→3}t^3*(dt/2)=1/2[t^4/4]{1→3} =1/2(81/4-1/4)=10 (2)∫1/(x(x+1)=log(x)-log(x+1)+C (Cは積分定数)

  • 高校数学 積分

    ∫-1→1 (x+2)log(x+2)dx という問題で、部分積分法で解くのに、解答はx+2を積分して(x+2)^2としています。確かにこれだと、処理が簡単なのですが、1/2x^2+2xとしても微分するとx+2になるのですが、これで計算すると、(面倒くさいやり方ですが)答えが合いません。積分定数はなんでもよいのではないのでしょうか?わかりにくい説明ですみませんが、どなたかわかる方、お知恵を貸してください。

  • 不定積分の問題です

    ∫(x^4 + x + 1)/(x^3 - 2x^2 + x)dx の答えは 1/2x^2 + 2x + log(x-1)/x + 1/(x-1) + C(積分定数) で、合っていますか?

  • 積分の回答があっているか教えてください

    以下の計算問題を解いたのですが、 よくわかってないまま解いたところもあり、あっているか自信がありません。 わかる方、ご指南おねがいします。 (1) ∫{1→2}1/(x+1) dx x+1=tとおく。 (dt)/(dx)=1→dx=(dt)/1 x | 1→2 --------- t | 2→3 ∫{2→3}1/t dt= [log |t|]{2→3} F(x)=log|3|-log|2| (2) ∫x^2/(1+x^2) dx 公式 1?(1+x^2) dx=arctan(x)+Cより F(x) = x-arctan(x)+C (Cは積分定数)

  • 不定積分の計算で出た定数は捨てて良いのでしょうか

     46歳の会社員です。思うところがあって、1 年前から数学を独学で勉強しています。  非常にレベルが低い質問をしているのかもしれませんが、周りに聞ける人がいないのでここに質問をすることにしました。  不定積分の計算で出てきた定数は積分定数と扱って捨ててよいのでしょうか ?  例えば、 ∫(x + 1)^2 dx ((x + 1)の 2乗を積分) を ∫(x^2 + 2 * x + 1) dx に変形すると、 x^3 / 3 + x^2 + x になりますが、 x + 1 = t とおいて ∫t^2 dt に変形すると、 x^3 / 3 + x^2 + x + 1 / 3 となり、定数 1 / 3 が出てきます。  また、 ∫{2 / (2 * x + 2)} dx を ∫{1 / (x + 1)} dx に変形すると、 log|x + 1| になりますが、 2 * x + 2 = t とおいて ∫(2 / t) * (1 / 2) dt に変形すると、 log|2 * x + 2| になります。  これを log|2 * x + 2| = log|(x + 1) * 2| = log|x + 1| + log|2| と変形すると、定数 log|2| が出てきます。  これらの定数は積分定数として扱って捨ててよいのでしょうか ?

  • 原始関数の問題の解き方

    以下のように解いたのですが、解答に自信がありません。 途中の式など、間違っていればご指摘のほどよろしくお願いします。 次の原始関数を求めよ。 (1) ∫(x+1)^5 dx x+1=tとおく。 (dt/dx)=1より、dx=dt よって、∫(x+1)^5 dx=∫t^5 dt =(1/6)t^6+C =(1/6)(x+1)^6+C (Cは積分定数) (2) ∫e^(5x) dx 5x=tとおく (dt/dx)=5より、dx=(dt/5) =∫e^(t)(dt/5)+C =(1/5)e^(5x)+C (Cは積分定数) (3) ∫x/(x^2+1)^2 dx =∫{(x+1)-1}/(x^2+1)^2 dx =(1/2)∫{(2x+2)-2}/(x^2+1)^2 dx =(1/2)∫(x^2+1)'/(x^2+1)^2 dx =(1/2)log|(x^2+1)^2|+C (Cは積分定数) (4) ∫1/√(23-x^2) dx 公式 ∫1/√(a^2-x^2) dx=sin^(-1) x/√a+C (a>0)より =sin^(-1) x/√23 +C (Cは積分定数) ご指導、よろしくお願いします。

  • ∫1/√(x^2+a)dxの求め方

    ∫1/√(x^2+a)dxの求め方 積分公式の一つに ∫1/√(x^2+a)dx=log{x+√(x^2+a)}+C(Cは積分定数) がありますよね。 これってどのように証明すればよいのですか? x=asinθで置換積分してもうまく解けないのですが…。

  • 積分の問題

    積分の計算でわからない問題があります^^; どなたか丁寧な解説を教えて下さい(__ ∫xの2乗+10x+7/(x-1)(x+2)の3乗dx ∫dx/eのx乗+e-x乗 ∫0から1までの1/xのp乗dx(pは正の定数) ∫2xの3乗+xの2乗-2x-5/xの4乗-1dx 式がわかりずらくてすいません^^; よろしくお願いします(__

  • 広義積分では+C(積分定数)が答えに必要ですか?

    広義積分では+C(積分定数)が答えに必要ですか?

  • 積分定数について

    高校の不定積分の積分定数の扱いについて、ふとした疑問が… ∫(x-1)^2dx = 1/3 (x-1)^3 + C = 1/3 x^3 -x^2 + x + C と答案に書くのは(厳密に言うと)おかしいのではないのでしょうか? つまり、(x-1)^3 は展開すると -1 という定数項が生じますよね。それをまとめて最終的に C という積分定数でひとまとめにしてしまうと、2番目の式と3番目の式とで、同じCでも値は違う…という事になるような気がしますが、気にしなくていいのですか? 積分定数Cの値は自在に変化するものとして無視していいのですか? それとも、例えば3番目の式の積分定数はCからBに変えて、最後に *B,Cは積分定数 とでも書いておけばいいのでしょうか? あくまで展開した形で答えを書きたい場合ですが…高校数学レベルの質問としてお答え下さい。お願いします。