• ベストアンサー
  • すぐに回答を!

量子力学

2つ質問があります。 (1)粒子の0≦x≦Lの範囲に制限された一次元の運動は波動関数 ψ(x)=Csin(πx/L) で記述される。 ここでCは規格化定数である。 粒子が次の範囲にある確率を求めよ。 1)L/2≦x≦L 2)L/4≦x≦3L/4 これの答えは両方1/2で合ってますか?解答がないのでわからないのですが。。 間違っているとしたらどのように解けばいいのでしょうか? (2)量子化とはどういうことを言うのでしょうか? たとえば、 運動量pの量子化→pハット=-ihバー∇ ハミルトニアンHの量子化→Hハット=pハット^2/2m=(-ihバー∇)^2/2m=-hバー∇^2/2m のようにすることが量子化ということですか?

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数247
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

波動関数の2乗は存在確率を示しますね。今、粒子は0≦x≦Lの範囲に必ず1個存在しますので∫[0,L]ψ(x)^2=1(←波動関数の規格化)。これから係数Cを求めるとC=√(2/L)が得られますね。従って波動関数はψ(x)=√(2/L)sin(πx/L)となります。 (1) >粒子が次の範囲にある確率を求めよ。 これは次の積分を求めればいいわけです。三角関数の積分計算で公式を見ながらやれば解けますね。ご自分で計算下さい。 1)∫[L/2,L]ψ(x)dx >(2)量子化とはどういうことを言うのでしょうか? 量子化とは位置xや運動量pなどの力学変数を演算子に置き換え、且つそれらの間に交換関係を設定するという事と思います。例えば[x,p]=xp-px=ihbarとなってxpとpxは同じ値をとりません。この関係から有名はHeisenbergの不確定原理が出てきます。交換関係の詳しいことはテキストに必ず書かれていると思いますので見てください。

参考URL:
http://www.phys.aoyama.ac.jp/~w3-furu/pdf/qma-2004/chap2.pdf

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 (1)規格化された波動関数がψ(x)であれば、存在確率を求める ∫[L/2,L]ψ(x)dx この式は ∫[L/2,L](ψ(x))^2dx ではないのですか? (2) 交換関係はなんとなく知っていましたが、そこに関係があったのですね。 ありがとうございます。 リンク先のページが非常にわかりやすいので参考にしてみます。

その他の回答 (1)

  • 回答No.2

>∫[L/2,L](ψ(x))^2dx ではないのですか? ご指摘の通りです。ミスタイプしました(笑い)。 >リンク先のページが非常にわかりやすいので参考にしてみます。 全貌はこちら↓を参照下さい。 http://www.phys.aoyama.ac.jp/~w3-furu/

参考URL:
http://www.phys.aoyama.ac.jp/~w3-furu/

共感・感謝の気持ちを伝えよう!

質問者からのお礼

そうですよね、揚げ足取りのようなことをしてすみません; うちの大学の先生が不真面目なのかこちらの青学の方が優秀なのか、 非常にわかりやすいです。 ありがとうございました。

関連するQ&A

  • 量子力学の問題について質問です。

    量子力学の問題です。 一次元だけで考える。粒子の波動関数がAe^{(k/2)(x-c)^2} (A・k>0.cは実数の定数)であたえられている時、 (a)規格化条件からAを求めよ (b)xの期待値を求めよ (c)(x-c)^2の期待値を求めよ (d)運動量p=-ihd/dx の期待値を求めよ (e)上で求めた運動量の期待値をp₀とするとき、(p-p₀)^2の期待値を求めよ どなたかわかる方説明していただけるとありがたいです。

  • 量子力学の問題です。

    量子力学の問題です。 体積Vの領域内に閉じ込められた粒子の波動関数がAe^((i/h)p・r)で与えられている時、規格化条件からAの値を求めよ。 (波動関数の hはエイチバー  pとrは両方ともにベクトルです。入力の仕方が分からなくて上記のとおりに書いてしまいました。。。) 自分は物理を専攻している大学3年生です。そのレベルで分かるようにご説明していただけると幸いです。

  • 量子力学の問題についての質問です

    量子力学野問題について野質問です。 試験が近いのに解けなくて困っています。 どなたかお助け下さい。 以下問題です。 波動関数ψ(x,t)={1/(2π)^1/2}∫Φ(k)exp[i{kx-ω(k)t}]dk (積分範囲は-∞から∞です。) で与えられる自由粒子を考える。ただし、Φ(k)とω(k)はk野関数で、Φ(k)は Φ(k)=Aexp(-ka) (k≧0) , 0 (k<0) である。Aは規格化定数で、aは正の実定数である。以下の問に答えよ。 (1) ω(k)を求めよ (2) この粒子の運動量pをp>p0(ピーゼロ)に観測する確率を、p0,a,h-(エイチバー)を用いて表せ。ただし、p0>0とする。 です。 どなたかよろしくお願いいたします。

  • 量子力学の問題

    ハミルトニアンが H=P^2/(2m) -FQ [P:運動量演算子 m:質量 F:一定の力 Q:位置演算子] であたえられるとき運動量表示のシュレディンガー方程式を書き下し,その波動関数Φ(p)を求めよという問題がわかりません。波動方程式は、               {p^2/(2m)-Fih d/dp}Φ=EΦ  [i:虚数 h:ディラック定数 エイチバーの代わりにhで表記します d/dp:pでの微分] でよいのでしょうか。 回答よろしくお願いします。

  • 量子力学

    猪木・川合著「量子力学I」p.162、または「基礎量子力学」p.131に 波動関数の規格化条件としてs>-1/2としてありますが s>-3/2のように思いますが、お教えくださいませんか。

  • 量子力学の問題

    量子力学をやっていてわからないことがあったので質問します。 t=0で <(⊿x)^2><(⊿p)^2>=h^2/4 <x>=<p>=0 を満たす一次元自由粒子の波束について、<(⊿x)^2>_{t=0} を用いて<(⊿x)^2>_t を表せ。 という問題の解答として、 ハイゼンベルグの運動方程式より, dx(t)/dt = (1/ih)[x,H]  = (1/ih)[x,p^{2}/2m]  = p/m therefore x(t) = (p/m)t+x dp(t)/dt = (1/ih)[p,H] = 0 therefore p(t) = p となるから <(⊿x)^2>_t = <x(t)^2>-<x(t)>^2 = <((p/m)t+x)^2>-0 = (t^2/m^2)<p^2>+<x^2>+(t/m)<xp+px> …まではわかるのですが、ここから第3項が落ちる、というのがなぜかわかりません。どなたかわかる方、よろしくお願いします。

  • 量子力学の期待値の問題です

    波動関数φ(x)=C*exp(-x^2/2a^2)から不確定性関係を導く問題です。 運動量のp^2の期待値<p^2>の計算がわかりません <p^2>=∫φ(x)'*p^2*φ(x)    *φ'(x)は共役複素数 =|c|^2*(-ih) ∫(d^2/dx^2) exp(-x^2/a^2) dx =|c|^2*(-ih)*(4/a^4) ∫x^2* exp(-x^2/a^2) dx ここで |C|^2=1/a√π (規格化より求めた) ∫x^2* exp(-x^l2/a^2) dx=(a^3*√π)/2 を代入して <p^2>= -2ih    以上のようになったのですが、間違っている気がしてなりません。 間違いがあったらご指摘お願いします。

  • 量子力学の問題

    -L/2<=x<=L/2 (L>0)における質量mの自由粒子の量子力学的運動を考える。 波動関数は周期的境界条件を満たすとする。 運動量の間隔dpの中にある運動量の固有状態の数はほぼいくらになるか? ただし、Lは十分大きく、したがってdp>>2π(h/(2πL))であるとする。 この問題が良くわかりません。Lが十分大きいのだから固有状態は連続スペクトルになると思うのですが、固有状態の数はどのようにもとめたら良いのでしょうか?どなたかよろしくお願いします。

  • 量子力学の問題で困っています

    量子力学の問題なのですが手元に資料が少なく、またネットで調べてもよくわからないので誰か教えて下さい。 1次元の調和振動子の規定状態の波動関数は一座表表示で次のように書ける Ψ(x,t) = Aexp(-2mωx^2/2h)exp(-iωt/2) これが調和振動子のシュレディンガー方程式の解であることを確かめなさい という問題なのですが調和振動子のシュレディンガー方程式というのは (-h^2/2m)d^2Ψ/dx^2 + mω^2x^2Ψ/2 = EΨ でいいのでしょうか? この方程式では時間の項を考慮していないように見えるのですが また、運動量の固有関数が f(x) = (1/√2πh)exp(ipx/h) であることを用いて、この波動関数Ψ(x,t)の運動量表示Φ(p,t)を求めなさい という問題も計算がうまくいかなくて困っています。教えていただけませんか? 式中のhは全てエイチバーです。よろしくお願いします

  • 量子力学について

    一次元の系を考え、-∞<x<∞にある電子の状態に対してポテンシャルのV(x)が、 V(x)={ +∞ (x≦0) , -V (0<x≦a) , 0 (a<x)} (V、a正の定数) であるとき、基底状態のエネルギー固有値と波動関数をもとめよ。(ただし、規格化定数は気にしなくてよく、-Vは十分深く、束縛状態は必ずできるものとする。) という問題で、エネルギー固有値を求めようとしたのですが、式が複雑でエネルギー固有値を求めら・れませんでした。どうにかして、基底状態のエネルギー固有値と波動関数だけを求める方法はないでしょうか? 回答よろしくお願いします。