• ベストアンサー
  • すぐに回答を!

一次元の井戸型ポテンシャル中の自由粒子についてハミルトニアンを導くとこ

一次元の井戸型ポテンシャル中の自由粒子についてハミルトニアンを導くところなんですが 全エネルギー E = p^2 / 2m + U(x) --(A) p <- -ih d/dx (hは棒付き) --(B) ∴ H^ = (-h^2 / 2m) d^2/dx^2 + U(x) --(C) において、 (1) (B)運動量演算子 -ih d/dx がいきなりでてくるのがわかりません。教科書など見てもこの導き方が載っていません この運動量演算子というのは波動関数に作用させると運動量になるというものなのでしょうか (2) (C)ハミルトニアンは演算子なのに、U(x)の部分はただのスカラーになっていますがいいのでしょうか (3) (1)で運動量演算子を波動関数に作用させたものが運動量ならば、波動関数に(C)を作用させたものは、(運動エネルギー)+(ポテンシャルエネルギー×波動関数)になってしまいませんか? そうするとシュレーディンガー方程式は (運動エネルギー)+(ポテンシャルエネルギー×波動関数)=(全エネルギー×波動関数) となって、次元が合わないような状況になってしまいませんか? 質問の意味がわからなかったらすぐ補足するので、1つでもいいので教えてください。よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数1049
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • c80s3xxx
  • ベストアンサー率49% (1614/3271)

(1) 導き方はないのです.この演算子が運動量に対応するということは,ほとんど直感的に提出され,それで矛盾がないことだけが確かめられているのです. (2) スカラー量で記述される演算子というだけのことです. (3) 波動関数には空間の逆数のそのまた1/2乗の次元を持っているだけです.二乗して(あるいは共役関数との積を取って)全空間で積分すれば確率になることから明らかです.一般には演算子を作用させて積分することで目的の物理量になるのです.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました すっきりしました

関連するQ&A

  • シュレーディンガー方程式 演算子

    シュレーディンガー法式でポテンシャル、V=0とし、運動エネルギーの演算子K(x)=-A(d^2/dx^2)と運動量の演算子を求めれます。 この事で質問なのですが、V=0の時に導出した運動エネルギー、運動量の演算子をポテンシャルがゼロでない時の波動関数に作用させて、得られた固有値がそれぞれの物理量になるとしてもいいのでしょうか?それとも、ポテンシャルがゼロでない時には、また別の運動エネルギー、運動量の演算子が存在するのでしょうか? ご回答よろしくお願いします。

  • 運動量演算子について

    シュレディンガー方程式でハミルトニアンのうちの運動エネルギーのところがなぜ、運動量演算子を二度同じ波動関数に二階の偏微分のようにかけるのかよくわかりません。古典力学でのp^2/(2m)はわかるのですが、それがなぜ、二階の微分になるのでしょうか?どちらかと言うと波動関数に運動量演算子を掛けた結果を二乗するなどの方がしっくりくるのですが、どなたか説明していただけると助かります。

  • 量子力学の問題

    ハミルトニアンが H=P^2/(2m) -FQ [P:運動量演算子 m:質量 F:一定の力 Q:位置演算子] であたえられるとき運動量表示のシュレディンガー方程式を書き下し,その波動関数Φ(p)を求めよという問題がわかりません。波動方程式は、               {p^2/(2m)-Fih d/dp}Φ=EΦ  [i:虚数 h:ディラック定数 エイチバーの代わりにhで表記します d/dp:pでの微分] でよいのでしょうか。 回答よろしくお願いします。

  • 一次元調和振動子について

    一次元調和振動子の問題を演習して分からない問題がでてきたので質問させていただきます。 ハミルトニアンH=(-h^2/2m)d^2/dx^2+mw^2x^2/2・・・(1) Hψ=Eψのシュレディンガー方程式において (1)のハミルトニアンにポテンシャルV=αx,V=βx^2が加わったときの固有エネルギーをそれぞれ求め、このポテンシャルが加わったことで運動がどのように変化するか簡単に説明しなさい。ただしα、β>0とする。 演算子を使っていろいろ試行錯誤してみましたが、なかなか解答にたどり着けません、よろしくお願いいたします。

  • ハミルトニアンのユニタリー変換

     原子核が原点に位置する,電子数 Z 個の原子と,光との相互作用を表すハミルトニアンを考えているのですが,ミニマル結合ハミルトニアンのユニタリー変換の過程が良く分かりません.教えていただけないでしょうか? ミニマル結合ハミルトニアンを    H' = (1/2m) Σ_{j} { p_{j}+ e A (r_{j}) }^{2}      + (1/2) ∫σ(r) φ(r) dr      + (1/2) (εE^{2} + (1/μ)B^{2}) とします.ややこしい式ですが,右辺第 1 項にだけ注目するので,説明は控えさせて下さい.  このハミルトニアンに対し    U = exp {- (ie/h~) Σ_{j} ∫_{0}^{1} r_{j}・A (λ r_{j}) dλ}     = exp {- (ie/h~) Σ_{j} B (r_{j})} なるユニタリー演算子を用いて H = U^{-1} H' U というユニタリー変換を考えます.  ただし,h~ = h/2π であり,また ∫ の積分範囲は 0 から 1 まで.また r_{j} は電子の座標です.A (r) はベクトルポテンシャル演算子です.B は,A の積分表記が複雑なので置き換えただけの演算子です.また p_{j} = p = - ih~ ∇_{j} は運動量演算子です.  H' の右辺第一項に対しユニタリー変換を行うと    U~{-1} { p + e A (r_{j}) } U = p - e ∇_{j} B + e A (r_{j}) となるらしいのですが,なぜこうなるのかが分かりません.具体的には,U^{-1} e A U = e A となるのは分かるのですが,U^{-1} p U = p - e ∇ B となるのが,なぜだか分かりません.  どなたか,ご教授いただけないでしょうか?

  • 波動関数が関係する期待値について

    期待値は、波動関数ψが規格化されているとすると  <f(x)>=∫dxf(x)P(x)=∫dxψ*f(x)ψ のようにあらわされると教科書に書いてありました。この場合、P(x)=ψ*ψであるようですが、そうすると  <f(x)>=∫dxf(x)ψ*ψ のようにあらわしてもよいことになります。f(x)=pつまりf(x)を運動量とするとき、運動量は演算子に置き換えることができますが、このような交換可能であるとするとどの関数に運動量演算子がかかっても結果は変わらない、ということになります。 これは明らかに違うのではないか、と思ったのですが、実際  <f(x)>=∫dxψ*f(x)ψ=∫dxf(x)ψ*ψ のようにしてもよいのでしょうか?

  • 線形作用素とシュレーディンガー表現

    清水明著 新版量子論の基礎p117からの話なのですが、 一般化座標qに対応する演算子をQとして、 一般化運動量pに対応する演算子をPとします。 Q|q> = q|q> となります。さて状態ベクトルを |ψ> = ∫dq ψ(q)|q> と書くと、 Q|ψ> = ∫dq ψ(q)q|q> となるそうですが、ここで1つ目の疑問があります。 Qはψ(q)には全く作用しないと考えてよいのでしょうか? 演算子Qは線形作用素だから、|q>のみに作用すると 考えるのでしょうか? そうなりますと、 P|ψ> = ∫dq ψ(q)P|q> となるはずです。だから (QP-PQ)|ψ> = ∫dq ψ(q)(QP-PQ)|q> = ih ∫dq ψ(q)|q> と計算されます。これを波動関数の積分として眺めなおすと、 Q|ψ> という計算は qψ(q)になっている。 P|ψ> という計算は -ih ∂ψ(q)/∂q に対応させると (QP-PQ)|ψ> という演算は、ちゃんとih ∫dq ψ(q)|q>と計算できる。 つまり、|q> に演算子を作用させることは、実質的には ψ(q) にqをかけたり、qで偏微分したりすればよくなる。 気になるのはPはもともと線形作用素でψ(q)には作用しない はず(と理解しています)なのに、結局波動関数の演算に 置き換えたときには-ih ∂ψ(q)/∂q となってψ(q)にまともに 作用しているということです。どうもすっきりしません。 よろしくお願いします。

  • 分かる限りで構わないのでお願いします。

    分かる限りで構わないのでお願いします。 x^,p^を座標および運動量演算子とし、次のユニタリー演算子を定義する。 (x^はxの上に^があるイメージで) τ(a)=exp(-iap^/h) (aは実定数) 次の問いに答えて下さい。 (1)|x〉をx^の固有値xに属する規格化された固有状態とする; x^|x〉= x|x〉, 〈x|x’〉=δ(x-x’). 正準交換関数[x^,p^]=ihを用いて、τ(a)|x〉もまたx^の規格化された固有状態であることを示し、この固有値求めて下さい。 (2)前問の結果を用い、任意の状態|Ψ〉に対し、 〈x|p^|Ψ〉=-ih(∂/∂x)〈x|Ψ〉 が成り立つことを示して下さい。さらにこの結果を用いて、 p^|p〉=p|p〉、〈p|p’〉=δ(p-p’) で定義される規格化された運動量の固有状態|p〉に対し、その波動関数 Ψp(x)=〈x|p〉を求めて下さい。 (3)系が並進対称であるとき、ハミルトニアン演算子H^は空間並進演算子τ(a)によるユニタリー変換のもとで不変である τ(a)H^τ(a)^-1=H^ このとき「量子力学における運動量保存則」;(d/dt)〈p^〉=0,が成立することを示して下さい。ただし、〈p^〉=〈Ψ|p^|Ψ〉は状態|Ψ〉におけるp^の期待値である。

  • 演算子について

    基本的な質問だったら申し訳ないのですが、自分ではちょっと解決できないのでお答えいただけたらありがたいです。 シュレディンガー方程式の波動関数ψ(x)の問題でエネルギーの期待値を求めるときには演算子としてih'd/dxを使うというのは教科書にかいてありわかったのですが、x自体の期待値を求めよという問題では何か別の演算子をつかうのでしょうか? 的を得た質問でなっかたらすいません。

  • 量子力学において運動量を微分演算子に代える物理的意味

    量子力学をきちんと物理的,数学的に理解したいので,独学で量子力学を勉強しています.学部時代は量子力学の授業がなかったこともあり,正直分からないことだらけで不思議に思うことがたくさんあります. そのうちの一つとして,ある原子内の電子群を考え,ハミルトニアンHを持つ系だとすると,波動関数Ψの絶対値の二乗(存在確率)で存在する原子内にある一つの電子は,あるエネルギ準位(固有値)εしか取り得ないという考え方をシュレディンガー方程式 HΨ=εΨ で表される固有値問題に帰着するということをとりあえず納得したとすると,線型代数学で出てくる固有値問題 Ax↑=λx↑ のように「ある固有ベクトルx↑に対してある固有値λが決まる」 ということと似ているのでなんとなく分かります. 波動方程式からシュレディンガー方程式を導出していくこともなんとなく分かりました.分からないことは,シュレディンガー方程式の導出として,ハミルトニアンを波動関数に作用させ,ハミルトニアン中に含まれる運動量を微分演算子に代えれば,シュレディンガー方程式になっているということです.この方法は,結果として成り立つだけで,後付けくさいなあと感じました. 過去にも同じような質問をされていた方 http://oshiete1.goo.ne.jp/qa587812.html がいましたので見てみると,運動量を微分演算子に代えるのは数学的には導けるようですが,その導く過程が物理的には分かりにくいと感じました. 量子力学を勉強する前に基礎知識が不十分なのもあるとおもいます. なので,量子力学を勉強する前に習得するべき学問は何かと,どの順番で勉強すれば効率がよいかも教えていただきたいです. (1)量子力学において,運動量を微分演算子に代えることの物理的意味は?もっと一般的に,その他の物理量(角運動量,スピン角運動量など)を演算子に代えることの物理的意味は? (2)量子力学を勉強する前に習得するべき学問は何かと,それらをどの順番で勉強すれば効率がよいか? です.長くなりましたが,よろしくお願いいたします.