三次元の井戸型ポテンシャルについて

このQ&Aのポイント
  • 量子力学の質問です。三次元の井戸型ポテンシャル(一辺Lの立方体)についてなのですが、(I)箱の端の波動関数を0とする条件、つまりψ(L,y,z,)=ψ(x,L,z,)=ψ(x,y,L)=0のとき、(II)周期的境界条件を条件にした場合、つまりψ(x,y,z,)=ψ(x+L,y,z,)=ψ(x,y+L,z)=ψ(x,y,z+L)という条件のとき、とでエネルギー固有値を求めました。
  • (I)のエネルギー固有値はE=h^2/(8πm)・(π/L)^2・{(n_x)^2+(n_y)^2+(n_z)^2}で、ただしn_x,y,zは0を含まない自然数です。一方、(II)のエネルギー固有値はE=h^2/(8πm)・(2π/L)^2・{(n_x)^2+(n_y)^2+(n_z)^2}で、ただしn_x,y,z=0,±1,±2...です。
  • (I)と(II)ではエネルギー固有値が異なる理由は、箱の端の波動関数が0となる条件と周期的境界条件が異なるためです。箱の端の波動関数が0となる条件(I)では、波がボックスの壁に衝突して反射し、波のクロージャー効果が発生します。一方、周期的境界条件(II)では、波がボックスの壁に衝突して反射せず、波がボックス内部で完全に閉じ込められるため、エネルギー固有値が異なります。フェルミ波数などの他の特性は同じ値を持つことが一般的ですが、エネルギー固有値は条件によって異なる場合があります。
回答を見る
  • ベストアンサー

三次元の井戸型ポテンシャルについて

量子力学の質問です。 三次元の井戸型ポテンシャル(一辺Lの立方体)についてなのですが、 (I)箱の端の波動関数を0とする条件 つまりψ(L,y,z,)=ψ(x,L,z,)=ψ(x,y,L)=0 のとき (II)周期的境界条件を条件にした場合 つまりψ(x,y,z,)=ψ(x+L,y,z,)=ψ(x,y+L,z)=ψ(x,y,z+L) という条件のとき とでエネルギー固有値を求めました。 すると(I)は E=h^2/(8πm)・(π/L)^2・{(n_x)^2+(n_y)^2+(n_z)^2} ただしn_x,y,zは0を含まない自然数。 (II)は E=h^2/(8πm)・(2π/L)^2・{(n_x)^2+(n_y)^2+(n_z)^2} ただしn_x,y,z=0,±1,±2... となりました。明らかに(I)と(II)ではエネルギー固有値がちがってきます。 これはなぜなのでしょうか? このほかのフェルミ波数等は同じ値をとるのにエネルギー固有値だけちがうというのはいいのでしょうか?

  • NRTHDK
  • お礼率60% (198/327)

質問者が選んだベストアンサー

  • ベストアンサー
  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.1

境界条件が違うから、という言い方もできるでしょうし、 同じ記号を使っているだけでn_xなどが表す量が違うからという言い方もできるでしょうか。 >このほかのフェルミ波数等は同じ値をとるのにエネルギー固有値だけちがうというのはいいのでしょうか? ん?(Lが十分に大きい時には)フェルミエネルギーも一緒になると思いますが。

NRTHDK
質問者

お礼

おっしゃるとおり、フェルミエネルギーは同じになりますね。「同じ記号を使っているだけでn_xなどが表す量が違う」と理解します。回答ありがとうございました。

関連するQ&A

  • 剛体ポテンシャルの摂動の問題ですが合ってますか?

    二次元剛体ポテンシャル V(x,y)=0 for |x|<(L/2) ,|y|<(L/2) V(x,y)=∞ otherwise について基底状態のエネルギー固有値と固有関数を求めた後 摂動ポテンシャルΔV(x,y)=axy、(a:摂動パラメータ)に対してエネルギーのずれを一次近似で求める問題です。 (解) Schrödinger方程式の解はu(x,y)=X(x)Y(y)と変数分離可能であるから X(x)=0 X(x)=A_x Cos[k x]+B_x Sin[k x] 境界条件X(±L/2)=0より非自明解が存在するためにはdet(・)=0より k_n=n_x π/Lである必要がある。 したがってエネルギー固有値はE_xn=ħ^2 π^2/(2 m L^2) n_x^2 完全性関係式によって規格化すると X_n(x)=√(2/L) Sin[n_xπx/L] for n_x=2,4,... X_n(x)=√(2/L) Cos[n_xπx/L] for n_x=1,3,... Y方向も同様にして Y_n(y)=√(2/L) Sin[n_yπy/L] for n_y=2,4,... Y_n(y)=√(2/L) Cos[n_yπy/L] for n_y=1,3,... 以上よりエネルギー固有値は E[n_x,n_y]=ħ^2 π^2/(2 m L^2) (n_x^2+n_y^2) と書ける。よって基底状態のエネルギー固有値は E[1,1]=ħ^2 π^2/(m L^2) 固有関数は u[1,1](x,y)=X_[1](x)Y[1](x)=(2/L) Cos[πx/L]Cos[πy/L] 摂動ハミルトニアンH'を考えるとH'=H_0+ΔV(x,y) 摂動論より基底状態のエネルギーE_0とすると一次近似は, E_0(1)=<u_0(0)|H'|u_0(0)>=<u_0(0)|H_0+ΔV(x,y)|u_0(0)>=E_0(0)+<u_0(0)|ΔV(x,y)|u_0(0)> したがってエネルギーのずれは ΔE=E_0(0)-E_0(1)=-<u_0(0)|ΔV(x,y)|u_0(0)>=-a (2/L)(∫{-L/2,L/2}x Cos[πx/L]^2 dx)(∫{-L/2,L/2},y Cos[πy/L]^2 dy)=0 と求まる。 上のように摂動論を考えたところエネルギーのずれがゼロになってしまいましたがこの問題の解答としてはこれで合ってるでしょうか。エネルギー変化がないということは摂動ハミルトニアンが非摂動ハミルトニアンに等しいということで理解すれば大丈夫ですか?

  • 箱型(井戸型)ポテンシャル

    このような問題なのですが、教えて下さい。 問1 2次元の無限に深い井戸型ポテンシャルの中の粒子運動を考える。          2L│_       │ │        │ │       │_│__x         L                                     【H:エイチバーの意】   H^2π^2         ny^2            エネルギー固有値は E=――――――(nx^2+――――)                       2mL^2          4            (nx=1,2,3・・・)、(ny=1,2,3、・・・)        (1)基底状態のエネルギー固有地をH、π、m、Lで表せ。    (2)第4励起状態(5番目)のエネルギー固有値をH、π、m、Lで表し、      それを与えるnxとnyの組み合わせを全て求めよ。 問2 1次元の無限に深い井戸型ポテンシャルの中の粒子運動を考える。    エネルギー固有関数はφ(x)=√(2/L)・sin(nπx/L)である。    L=1.0×10^-10m として、第1励起状態にある粒子を、    x=0とx=0.25×10^-10mの間に観測する確率を計算せよ。

  • 2次元井戸型ポテンシャルの問題がわかりません

    「ポテンシャルV(x、y)は  {0<=x、y<=L}のとき0 それ以外の領域は∞ のときのエネルギー固有値と波動関数を求めよ」 という問題なんですがよくわかりません。 周期的境界条件ってこの場合ありますか? 流れだけでもいいですので教えてください。

  • 井戸型ポテンシャルについて

    1次元井戸方ポテンシャル(0<x<L,V=0 x<0,x>L,V=∞)の問題で、固有エネルギーEiがEcより小さなすべての固有状態の数N(E)を求めよという問題があるのです。が、調べたところ、これを解くためにはまずこの問題での固有エネルギーを出して、Ei<Ecを満たす最大のEiをEとして、n=N(E)として、エネルギー固有値の式から出せばいいみたいなのですが、これでは全てではなく、Ei=Eとなる時のnの値しか出ないような気がするのですが…。N(E)はEi<Ecを満たすnの総和じゃないのですか?どなたか教えてください。かなり困ってます。

  • 1次元の井戸型ポテンシャル

    以下のような1次元の井戸型ポテンシャル               V(x)=0 (-L<x<L)                 =V  (x<-L, x>L)       ただし 0<E<V 中の質量mの粒子について・・・・ この問題でグラフの交点を求めることによって、固有値が求められますが単純な計算では出せません。よって、以下のような課題を出されました。 上の問題で適当なVとLについて、固有値をニュートン法などの簡単なプログラムを組んで、数値的に計算して求めよ。また、そのときの固有関数を求めてプロットせよ。 以上の問題なのですが、簡単なヒントなのでよろしいので分かる方がいたら教えてください。お忙しい中ありがとうございました。    

  • 無限に深い井戸型ポテンシャルについて

    「ブタジエンの炭素原子の配列を一直線と近似して、両端の炭素原子間の距離L=5.78Åとすると、4個の炭素原子が無限に深い井戸型ポテンシャルを形成していると考えるとき、ブタジエンの基底状態のエネルギーE1を求めよ。4個のΠ電子間の斥力は無視できて、各々が自由電子として振舞うとする。」 以上の様な問題を考えるときにおいて、 エネルギー固有値E= h'^2*Π^2*n^2 /2*m*Lに代入して求めると思うのですが、(h'=h/2Π m=静止した電子の質量) 計算する際にLについてのどのように考えれば良いかがわかりません。私はL/4orLor4Lいずれも計算してみたのですが、どうも合いません^^; どう解釈すれば良いと思われますか?

  • 井戸型ポテンシャルの外側のエネルギー固有値?

    無限に深い井戸型ポテンシャルの問題について質問です。 例えばポテンシャルが -L<=x<=L で0 その他がポテンシャル無限 とした時,井戸の外(x<=-L,L<=X)では波動関数は0となるのは理解できるのですが(ポテンシャル無限では粒子は存在できないから), このときのエネルギー固有値はどうなるんでしょうか? シュレーディンガー方程式を考えると (-h^2/2m∇^2+V)ψ=Eψ (V:ポテンシャル) で,ψ=0だから両片は恒等的に0ですよね? その場合エネルギー固有値って求まらないんでしょうか? (粒子が存在しないんだからエネルギー固有値だって0になるんじゃないかとも思うのですが...) よろしくお願いします。

  • 再び井戸型ポテンシャル…

    すみません、再びなのですが、今度は2次元井戸方ポテンシャル(0<x<L,V=0 x<0,x>L,V=∞)の問題で、固有エネルギーEiがEcより小さなすべての固有状態の数N(E)を求めよという問題なのですが、今度はN(E)が円の面積(Nx,Ny座標での)になっているというイメージがどうもよくわかりません…。なぜそうなるのでしょうか?教えていただけませんか?

  • 一様磁場中のShrodinger方程式

    z方向に一様磁場がある場合のSchrodinger方程式を解いていて、 1/2m{p_x^2+p_y^2+p_z^2+1/4e^2H^2(x^2+y^2)-eHL_z}ψ=Eψ とゆう固有値問題になったのですが、2次元振動子 p_x^2+p_y^2+1/4e^2H^2(x^2+y^2) の固有値を eH(n'+1) として、L_zの固有値をmとすると、n'-mが偶数になる理由がわかりません。 また、それ以外にこの固有値方程式を解く方法があるのなら教えてほしいです。お願いします。

  • 井戸型:シュレーディンガー

    井戸型ポテンシャルの問題です。 どうも数学的な計算が苦手なものでして・・・。 できれば詳しくお願い致します。 ポテンシャル U(x,y)=0、0≦x≦L、0≦y≦L U(x,y)=∞、それ以外 無限に深い井戸型ポテンシャル内の粒子運動を考える。 井戸内でのシュレーディンガー方程式は 【エッチバー:H とする】 -H^2/2m{∂^2φ(x,y)/∂x^2 + ∂^2φ(x,y)/∂y^2}+U(x,y)φ(x,y)=Eφ(x,y) である。固有関数は φ(x,y)=A・sin(aπx/L)sin(bπx/L)、(a,b=1,2,3,・・・)とする。 問1 基底状態(a=1、b=1)のエネルギー固有値を計算せよ。 問2 基底状態の固有関数を用いて、規格化条件からAを求めよ。