• ベストアンサー
  • すぐに回答を!

井戸型ポテンシャルの外側のエネルギー固有値?

無限に深い井戸型ポテンシャルの問題について質問です。 例えばポテンシャルが -L<=x<=L で0 その他がポテンシャル無限 とした時,井戸の外(x<=-L,L<=X)では波動関数は0となるのは理解できるのですが(ポテンシャル無限では粒子は存在できないから), このときのエネルギー固有値はどうなるんでしょうか? シュレーディンガー方程式を考えると (-h^2/2m∇^2+V)ψ=Eψ (V:ポテンシャル) で,ψ=0だから両片は恒等的に0ですよね? その場合エネルギー固有値って求まらないんでしょうか? (粒子が存在しないんだからエネルギー固有値だって0になるんじゃないかとも思うのですが...) よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

きっと、「井戸の中の固有値」と「井戸の外の固有値」というのが別々にあると思っていらっしゃるのだと思いますが、そこが違います。 (-h^2/2m∇^2+V)ψ=Eψ が全てのxで成り立つ(井戸の中と外の両方で成り立つ)ようなEが「固有値」です。 井戸の外ではψ=0なので、任意のEで上記の式が成り立ちます。 だから、井戸の中でシュレーディンガー方程式が成り立つようなEを考えれば(井戸の外でも成り立つので)、そのEが固有値となっているんですね。 ところで、#1さんの回答が正しいと思ってしまうのであれば、「井戸の外でψ=0」となった理由を確かめた方がいいのでは?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

まさしく仰せの通り,井戸の中の固有値と井戸の外の固有値は別々に求めるものだと思ってました。 大変な勘違いですね。 まだまだもっと勉強しなければいけませんね。本当にありがとうございました。

その他の回答 (2)

  • 回答No.3
  • phyonco
  • ベストアンサー率38% (47/121)

#1のphyoncoです。#2さんが正しいです。抽象ヒルベルト空間まで行って、ハミルトニアンをその中の演算子として座標表示と無関係に表せば分かり易いと思います。思わずつられてしまいました。失礼しました。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

いえいえ,考えに詰まっていたところでアドバイスをいただけたので感謝です! ヒルベルト空間... なんか挫折しそうですが(笑)頑張って考えてみます。 ありがとうございました!

  • 回答No.1
  • phyonco
  • ベストアンサー率38% (47/121)

ψを未知関数としてVを無限大とすると、方程式が成立するためにはE=無限大でなければならないでしょう。これが答えです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

確かに言われてみればポテンシャルが無限なら (左辺)=無限*ψ だから (右辺)=無限*ψ (E=無限) にならないと変ですね。 どの参考書を見ても,井戸の中の波動関数と固有値については詳しく書かれているのに, 無限の井戸型ポテンシャルの外側は波動関数ψ=0としか書かれていなかったので(エネルギー固有値についての記載がない), 定義できないのかなー,なんて思っていました。 でも,結局有限値にはならないんですね。 ありがとうございました!

関連するQ&A

  • 一次元井戸型ポテンシャル、井戸の外でのシュレディンガー方程式は?

    井戸の深さが無限の一次元井戸型ポテンシャルで、井戸の外において電子が満たすべきシュレディンガー方程式を求める問題があるのですが、井戸の外では波動関数φ(x)=0なのでシュレディンガー方程式は0になると考えたのですが、合っているでしょうか?

  • 箱型(井戸型)ポテンシャル

    このような問題なのですが、教えて下さい。 問1 2次元の無限に深い井戸型ポテンシャルの中の粒子運動を考える。          2L│_       │ │        │ │       │_│__x         L                                     【H:エイチバーの意】   H^2π^2         ny^2            エネルギー固有値は E=――――――(nx^2+――――)                       2mL^2          4            (nx=1,2,3・・・)、(ny=1,2,3、・・・)        (1)基底状態のエネルギー固有地をH、π、m、Lで表せ。    (2)第4励起状態(5番目)のエネルギー固有値をH、π、m、Lで表し、      それを与えるnxとnyの組み合わせを全て求めよ。 問2 1次元の無限に深い井戸型ポテンシャルの中の粒子運動を考える。    エネルギー固有関数はφ(x)=√(2/L)・sin(nπx/L)である。    L=1.0×10^-10m として、第1励起状態にある粒子を、    x=0とx=0.25×10^-10mの間に観測する確率を計算せよ。

  • 井戸型:シュレーディンガー

    井戸型ポテンシャルの問題です。 どうも数学的な計算が苦手なものでして・・・。 できれば詳しくお願い致します。 ポテンシャル U(x,y)=0、0≦x≦L、0≦y≦L U(x,y)=∞、それ以外 無限に深い井戸型ポテンシャル内の粒子運動を考える。 井戸内でのシュレーディンガー方程式は 【エッチバー:H とする】 -H^2/2m{∂^2φ(x,y)/∂x^2 + ∂^2φ(x,y)/∂y^2}+U(x,y)φ(x,y)=Eφ(x,y) である。固有関数は φ(x,y)=A・sin(aπx/L)sin(bπx/L)、(a,b=1,2,3,・・・)とする。 問1 基底状態(a=1、b=1)のエネルギー固有値を計算せよ。 問2 基底状態の固有関数を用いて、規格化条件からAを求めよ。

  • 再び井戸型ポテンシャル…

    すみません、再びなのですが、今度は2次元井戸方ポテンシャル(0<x<L,V=0 x<0,x>L,V=∞)の問題で、固有エネルギーEiがEcより小さなすべての固有状態の数N(E)を求めよという問題なのですが、今度はN(E)が円の面積(Nx,Ny座標での)になっているというイメージがどうもよくわかりません…。なぜそうなるのでしょうか?教えていただけませんか?

  • 井戸型ポテンシャルについて

    1次元井戸方ポテンシャル(0<x<L,V=0 x<0,x>L,V=∞)の問題で、固有エネルギーEiがEcより小さなすべての固有状態の数N(E)を求めよという問題があるのです。が、調べたところ、これを解くためにはまずこの問題での固有エネルギーを出して、Ei<Ecを満たす最大のEiをEとして、n=N(E)として、エネルギー固有値の式から出せばいいみたいなのですが、これでは全てではなく、Ei=Eとなる時のnの値しか出ないような気がするのですが…。N(E)はEi<Ecを満たすnの総和じゃないのですか?どなたか教えてください。かなり困ってます。

  • 2次元井戸型ポテンシャルの問題がわかりません

    「ポテンシャルV(x、y)は  {0<=x、y<=L}のとき0 それ以外の領域は∞ のときのエネルギー固有値と波動関数を求めよ」 という問題なんですがよくわかりません。 周期的境界条件ってこの場合ありますか? 流れだけでもいいですので教えてください。

  • 一次元の井戸型ポテンシャル中の自由粒子についてハミルトニアンを導くとこ

    一次元の井戸型ポテンシャル中の自由粒子についてハミルトニアンを導くところなんですが 全エネルギー E = p^2 / 2m + U(x) --(A) p <- -ih d/dx (hは棒付き) --(B) ∴ H^ = (-h^2 / 2m) d^2/dx^2 + U(x) --(C) において、 (1) (B)運動量演算子 -ih d/dx がいきなりでてくるのがわかりません。教科書など見てもこの導き方が載っていません この運動量演算子というのは波動関数に作用させると運動量になるというものなのでしょうか (2) (C)ハミルトニアンは演算子なのに、U(x)の部分はただのスカラーになっていますがいいのでしょうか (3) (1)で運動量演算子を波動関数に作用させたものが運動量ならば、波動関数に(C)を作用させたものは、(運動エネルギー)+(ポテンシャルエネルギー×波動関数)になってしまいませんか? そうするとシュレーディンガー方程式は (運動エネルギー)+(ポテンシャルエネルギー×波動関数)=(全エネルギー×波動関数) となって、次元が合わないような状況になってしまいませんか? 質問の意味がわからなかったらすぐ補足するので、1つでもいいので教えてください。よろしくお願いします。

  • 1次元の井戸型ポテンシャル

    以下のような1次元の井戸型ポテンシャル               V(x)=0 (-L<x<L)                 =V  (x<-L, x>L)       ただし 0<E<V 中の質量mの粒子について・・・・ この問題でグラフの交点を求めることによって、固有値が求められますが単純な計算では出せません。よって、以下のような課題を出されました。 上の問題で適当なVとLについて、固有値をニュートン法などの簡単なプログラムを組んで、数値的に計算して求めよ。また、そのときの固有関数を求めてプロットせよ。 以上の問題なのですが、簡単なヒントなのでよろしいので分かる方がいたら教えてください。お忙しい中ありがとうございました。    

  • 井戸型ポテンシャルのアナロジーについて

    V(x)=∞ (x<0), V(x)=0 (0<x<L), V(x)=V0 (x>L)の許容エネルギーは深さが同じV0で、幅が2Lの有限井戸型ポテンシャルの奇関数解に対するエネルギーに等しい理由を教えてください。

  • 量子力学 井戸型ポテンシャルの最低エネルギーについて

    現在,院試の勉強をしている者です. "0<x<aの範囲でポテンシャルが0で他の範囲では∞" というような無限の井戸型ポテンシャルの最低エネルギーと, "0<x<aの範囲でポテンシャルが0で他の範囲ではV" というような有限の時の最低エネルギーを比べると,後者の最低エネルギーの方が低くなることを簡潔に説明せよ,という問題で困っています. 有限のときにはx<0,a<xのような範囲でも粒子の存在する確立があるのでその辺りのことと関係があるのではないかなと思ってはいるのですが,残念ながら明確な答えがまったくわかりません. もしよろしければご教授お願いいたします.