• ベストアンサー

量子力学 井戸型ポテンシャルの最低エネルギーについて

現在,院試の勉強をしている者です. "0<x<aの範囲でポテンシャルが0で他の範囲では∞" というような無限の井戸型ポテンシャルの最低エネルギーと, "0<x<aの範囲でポテンシャルが0で他の範囲ではV" というような有限の時の最低エネルギーを比べると,後者の最低エネルギーの方が低くなることを簡潔に説明せよ,という問題で困っています. 有限のときにはx<0,a<xのような範囲でも粒子の存在する確立があるのでその辺りのことと関係があるのではないかなと思ってはいるのですが,残念ながら明確な答えがまったくわかりません. もしよろしければご教授お願いいたします.

  • -B-
  • お礼率66% (2/3)

質問者が選んだベストアンサー

  • ベストアンサー
noname#21219
noname#21219
回答No.1

不確定性原理です。 仰るように、有限のポテンシャル壁の場合は 波動関数が染み出します。つまり、存在確率が それだけ広がります。ということは、不確定性原理 ΔxΔp≧h/4πにより、Δpが無限壁の場合より小さくなります。無限壁の場合、波動関数は全く染み出さないからΔxも有限壁より小さいのです。

-B-
質問者

お礼

なるほど、不確定性原理を使えばよかったのですね。 付け焼刃に勉強をしているのでは、やはり大事な部分が抜けてしまいますね。物理系の学科ではないのですが院試に出るようなので慌てて勉強してまして…。 とても参考になりました。 本当にありがとうございます。 院試受験仲間にも教えてあげようと思います。

その他の回答 (1)

  • ojisan7
  • ベストアンサー率47% (489/1029)
回答No.2

定性的にsky fireさんの回答で良いと思います。波動関数が染み出している分、エネルギーも低くなるのです。実際に計算してみると、ポテンシャルVが無限のときの最低エネルギーは、 E≒π^2h^2/2ma^2 ポテンシャルVが有限の時の最低エネルギーは、 E=h^2/(2ma^2+h^2/V) となり、後者の方が低いことが確認できます。(ただし、hはh barです。)

-B-
質問者

お礼

実際に自分でも計算し、確かめてみようと思います。 本当にありがとうございます。

関連するQ&A

  • 井戸型ポテンシャルの外側のエネルギー固有値?

    無限に深い井戸型ポテンシャルの問題について質問です。 例えばポテンシャルが -L<=x<=L で0 その他がポテンシャル無限 とした時,井戸の外(x<=-L,L<=X)では波動関数は0となるのは理解できるのですが(ポテンシャル無限では粒子は存在できないから), このときのエネルギー固有値はどうなるんでしょうか? シュレーディンガー方程式を考えると (-h^2/2m∇^2+V)ψ=Eψ (V:ポテンシャル) で,ψ=0だから両片は恒等的に0ですよね? その場合エネルギー固有値って求まらないんでしょうか? (粒子が存在しないんだからエネルギー固有値だって0になるんじゃないかとも思うのですが...) よろしくお願いします。

  • 量子力学 井戸型ポテンシャルでの場合分けについて

    有限深さの井戸型ポテンシャルの問題はポテンシャルの有る領域と無い領域とで2つのシュレディンガー方程式を立てますよね。 これは当然なんですが、その粒子のエネルギーEとポテンシャル障壁Vとの大小関係、つまりE>Vなのか0<E<Vなのかで場合分けする必要は無いのでしょうか。階段型ポテンシャルやトンネル効果の問題ではエネルギーにおける場合分けはしているのですが、有限井戸型ポテンシャルの問題では場合分けをしてる参考書があまり無いような気がします。授業でも先生はE>V、0<E<Vとで場合分けはしていませんでした。場合分けしないのは階段型とは違って透過や反射に焦点を当てていないからですか? どなたか宜しくお願いします。

  • 量子力学の問題です><

    いろんな問題を解いているところなのですが、無限と有限が混じった井戸型ポテンシャルの問題がよくわかりません… 次のポテンシャル V(x)= ∞(x<0)、0(0≦x≦a)、Vo(a<x) の束縛状態のエネルギー固有値を求めよ。また、基底状態の波動関数の概形を図示せよ。 という問題です。もしわかる方がいたら教えてください。 よろしくおねがいします><

  • 箱型(井戸型)ポテンシャル

    このような問題なのですが、教えて下さい。 問1 2次元の無限に深い井戸型ポテンシャルの中の粒子運動を考える。          2L│_       │ │        │ │       │_│__x         L                                     【H:エイチバーの意】   H^2π^2         ny^2            エネルギー固有値は E=――――――(nx^2+――――)                       2mL^2          4            (nx=1,2,3・・・)、(ny=1,2,3、・・・)        (1)基底状態のエネルギー固有地をH、π、m、Lで表せ。    (2)第4励起状態(5番目)のエネルギー固有値をH、π、m、Lで表し、      それを与えるnxとnyの組み合わせを全て求めよ。 問2 1次元の無限に深い井戸型ポテンシャルの中の粒子運動を考える。    エネルギー固有関数はφ(x)=√(2/L)・sin(nπx/L)である。    L=1.0×10^-10m として、第1励起状態にある粒子を、    x=0とx=0.25×10^-10mの間に観測する確率を計算せよ。

  • とびとびのエネルギー値(量子力学)について。

    とびとびのエネルギー値(量子力学)について。 ε:エネルギー m:粒子の質量 L:井戸型ポテンシャルが0の領域(1次元) n:量子数 エッチバー=(h/2π) 以上の記号から、次の式が成り立つ。 ε(n)=(1/2m) [(h/2π)π/L]^2 n^2 nの関数としてとびとびのエネルギー値をとるという事みたいなんです。 でも例えば、 f(x)=x^2 → (d/dx)f(x)=2x となり、f(x)は連続な関数であるといえる。 この違いと言うか、 どういった観点からεはとびとびだという事になるのでしょうか?

  • 井戸型ポテンシャルのアナロジーについて

    V(x)=∞ (x<0), V(x)=0 (0<x<L), V(x)=V0 (x>L)の許容エネルギーは深さが同じV0で、幅が2Lの有限井戸型ポテンシャルの奇関数解に対するエネルギーに等しい理由を教えてください。

  • 量子力学の問題

    次の問題の解答がわからなく困っています。 問)原点で段差がある1次元ポテンシャル V(x)=0 (x<0) 領域1 V(x)=V0 (0<x) 領域2 を考える。V0>0とする。左側の無限遠(x=-∞)から粒子が入射してくる場合を考える。 この自由粒子はエネルギーEをもつ。粒子のエネルギーがポテンシャルのエネルギーの大きさV0と比較して (1)V0<Eの場合と(2)V0>Eの場合について粒子が古典力学に従って運動する場合と量子力学に従って運動する場合について議論せよ。 という問題です、どうかよろしくお願いします。

  • 無限に深い井戸型ポテンシャルについて

    無限に深い井戸型ポテンシャルについて、GaNの層厚d=0.5nm、伝導帯電子の有効質量me=0.2m0の とき (1)基底状態、第一励起状態および第二励起状態のエネルギー固有値E1,E2,E3をeVの単位であらわすとどうなるのですか? (2)GaNの伝導帯の3次元状態密度および、この問題のような2次元の状態密度を計算した場合の状態密度とエネルギーの関係はどうなるのでしょうか? 自分で勉強してみたものの、無限に深い井戸型ポテンシャルだけは良くわかりません。どなたか教えていただけるとさいわいです。

  • 井戸型ポテンシャル(JJサクライ)

    JJサクライ下巻のp397(5.1.15) 摂動論ではないのですが、 さらりと触れられている箇所が納得できずにモヤモヤしています。 非常に弱い一次元の井戸型ポテンシャルを考えます。 V=-V0 (|x| < a) V=0 (|x| > a) λ>0 の引力に対して E = - (2ma^2)/h^2 |λV0|^2 というようなエネルギーの束縛状態がある。 (ここでhはh/2πの意味です) このエネルギーの式はどのように導いたのでしょうか。 単純な井戸型ポテンシャルでもなさそうですし、 トンネル効果と比較してもよく分かりません。 よろしくお願いします。

  • 井戸型:シュレーディンガー

    井戸型ポテンシャルの問題です。 どうも数学的な計算が苦手なものでして・・・。 できれば詳しくお願い致します。 ポテンシャル U(x,y)=0、0≦x≦L、0≦y≦L U(x,y)=∞、それ以外 無限に深い井戸型ポテンシャル内の粒子運動を考える。 井戸内でのシュレーディンガー方程式は 【エッチバー:H とする】 -H^2/2m{∂^2φ(x,y)/∂x^2 + ∂^2φ(x,y)/∂y^2}+U(x,y)φ(x,y)=Eφ(x,y) である。固有関数は φ(x,y)=A・sin(aπx/L)sin(bπx/L)、(a,b=1,2,3,・・・)とする。 問1 基底状態(a=1、b=1)のエネルギー固有値を計算せよ。 問2 基底状態の固有関数を用いて、規格化条件からAを求めよ。