• ベストアンサー

とびとびのエネルギー値(量子力学)について。

とびとびのエネルギー値(量子力学)について。 ε:エネルギー m:粒子の質量 L:井戸型ポテンシャルが0の領域(1次元) n:量子数 エッチバー=(h/2π) 以上の記号から、次の式が成り立つ。 ε(n)=(1/2m) [(h/2π)π/L]^2 n^2 nの関数としてとびとびのエネルギー値をとるという事みたいなんです。 でも例えば、 f(x)=x^2 → (d/dx)f(x)=2x となり、f(x)は連続な関数であるといえる。 この違いと言うか、 どういった観点からεはとびとびだという事になるのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • felicior
  • ベストアンサー率61% (97/159)
回答No.1

nが(正の)整数だからです。 テキストに書いてなかったとしたら問題です。 そもそも「量子数」という言葉はとびとびの値をとるものにしかつけません。 井戸型ポテンシャルのように無限に高いポテンシャル障壁によって粒子が束縛されると 波動関数の値はその境界より先ですべてゼロになっている必要があります。(固定端反射と言います。) 0≦x≦Lにおいて、このような条件を満たす正弦関数の形をした波動関数の解はnを整数として sin(nπx/L) と表されるものに限られるところからエネルギーの離散性が出てきます。 nが整数でなければx=0、Lを代入してもゼロになりません。

skeleton24
質問者

お礼

回答、ありがとうございます。 あ・・・後の方に整数nと表記されてました・・・ というか、よく考えれば分かる事ですね・・・ nが連続ではないという前提だから、εも連続ではないんですね。 こんな質問に答えて頂いて、重ね重ねありがとうございます。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 量子力学の問題です。

    量子力学の問題です。 一辺の長さがaの立方体に閉じ込められた質量mの粒子につき、その固有関数とエネルギーを求めよ。 まったく分かりません。お願いします。

  • 井戸型ポテンシャルの外側のエネルギー固有値?

    無限に深い井戸型ポテンシャルの問題について質問です。 例えばポテンシャルが -L<=x<=L で0 その他がポテンシャル無限 とした時,井戸の外(x<=-L,L<=X)では波動関数は0となるのは理解できるのですが(ポテンシャル無限では粒子は存在できないから), このときのエネルギー固有値はどうなるんでしょうか? シュレーディンガー方程式を考えると (-h^2/2m∇^2+V)ψ=Eψ (V:ポテンシャル) で,ψ=0だから両片は恒等的に0ですよね? その場合エネルギー固有値って求まらないんでしょうか? (粒子が存在しないんだからエネルギー固有値だって0になるんじゃないかとも思うのですが...) よろしくお願いします。

  • 量子力学

    2つ質問があります。 (1)粒子の0≦x≦Lの範囲に制限された一次元の運動は波動関数 ψ(x)=Csin(πx/L) で記述される。 ここでCは規格化定数である。 粒子が次の範囲にある確率を求めよ。 1)L/2≦x≦L 2)L/4≦x≦3L/4 これの答えは両方1/2で合ってますか?解答がないのでわからないのですが。。 間違っているとしたらどのように解けばいいのでしょうか? (2)量子化とはどういうことを言うのでしょうか? たとえば、 運動量pの量子化→pハット=-ihバー∇ ハミルトニアンHの量子化→Hハット=pハット^2/2m=(-ihバー∇)^2/2m=-hバー∇^2/2m のようにすることが量子化ということですか?

  • 量子力学の問題

    次の問題の解答がわからなく困っています。 問)原点で段差がある1次元ポテンシャル V(x)=0 (x<0) 領域1 V(x)=V0 (0<x) 領域2 を考える。V0>0とする。左側の無限遠(x=-∞)から粒子が入射してくる場合を考える。 この自由粒子はエネルギーEをもつ。粒子のエネルギーがポテンシャルのエネルギーの大きさV0と比較して (1)V0<Eの場合と(2)V0>Eの場合について粒子が古典力学に従って運動する場合と量子力学に従って運動する場合について議論せよ。 という問題です、どうかよろしくお願いします。

  • 量子力学の問題

    -L/2<=x<=L/2 (L>0)における質量mの自由粒子の量子力学的運動を考える。 波動関数は周期的境界条件を満たすとする。 運動量の間隔dpの中にある運動量の固有状態の数はほぼいくらになるか? ただし、Lは十分大きく、したがってdp>>2π(h/(2πL))であるとする。 この問題が良くわかりません。Lが十分大きいのだから固有状態は連続スペクトルになると思うのですが、固有状態の数はどのようにもとめたら良いのでしょうか?どなたかよろしくお願いします。

  • 量子力学と重力について

    等価原理によれば、重力場中の質点の配位空間の軌道は質点の質量には依らないとされています。しかし量子力学では軌道が質量に依存してしまうように思われます。質量Mの質点が作る重力場の中を質量mの質点が運動するとします。(M≫m)。このときボーア半径に相当するものを求めると、  a = h^2/me^2 (ただしhはhバーを表す) の中でe^2をGMmで置き換えれば良いはずだから  a = h^2/GMm^2 となって半径がmに依存してしまいます。そこで教えていただきたいのですが、 (1)現在、重力相互作用も取り入れた統一理論として超弦理論が作られています。超弦理論では上のような等価原理と量子力学の矛盾はどのように説明されるのでしょうか。 (2)素粒子に作用する地球の重力は非常に微弱で測定するのは困難です。しかし中性子干渉計を用いてそのような測定がなされています。その場合、量子力学の計算はハミルトニアンのポテンシャルを重力ポテンシャルとして計算すれば良いのでしょうか。もしそうだとすると上のように等価原理が破れていることになってしまわないのでしょうか。

  • [量子力学] 重ね合せの係数の求め方

    お世話になります。 量子力学を勉強しています(初心者)。 ある波動関数 Ψ(x,t) が Ψ(x,t) = c1 Ψ1(x,t) + c2 Ψ2(x,t) のように複数の(正規直交の)波動関数の重ね合せで表されるとき、 c1 と c2 を求めるにはどうすればよいのでしょうか。 具体的には、例えば、無限の井戸型ポテンシャルの問題では いろんな量子数 n の状態が重ね合わされているかと思いますが、 何らかの方法で観測したときに n=2 が観測される確率を 求めるにはどうすればよいのでしょうか。 フーリエ級数なら、Ψ2 と Ψ の内積を計算すれば求まりますが、 今の場合Ψが不明なので内積が計算できないように思えます。 何か勘違いしているのかもしれません。 ご回答いただけると助かります。よろしくお願いします。

  • 量子力学

    縮退のない1次元の系でポテンシャルが偶関数の場合、エネルギーの固有関数は偶関数か、奇関数に限られることを示せ。 1次元のシュレディンガ-方程式はポテンシャルV(x)として、 -(h'^2/2m)(d^2φ(x)/dx^2)+V(x)φ(x)=Eφ(x) (h'=h/2π) ポテンシャルが偶関数なのでV(x)=V(-x)となる。 ここからどうすればよいですか?詳しい解説お願いします。

  • 量子力学2体問題

    量子力学の陽子と中性子が核力によって結合している2粒子系の状態についてです。 全質量と換算質量の2つのシュレディンガー方程式をたて、その次に換算質量についてのシュレディンガー方程式を動径部分と角度部分に分け(R(r)とY(θφ))動径部分について考えます。R(r)=χ(r)/rとしてχ(r)の微分方程式を求めました。 次に核力を表すポテンシャルとしてV(r)=∞(r<a) -V。(a<r<c) 0(c<r) の斥力芯を持つ井戸型ポテンシャル(V。>0)でb=c-aとして束縛状態が基底状態であるとするときエネルギー固有値を求める関係式を求める問題なのですが、このときの基底状態とはR(r)とY(θφ)についての微分方程式=λ(=l(l+1))とするとl=0としていいのなぜですか?その理由がよくわからないです。 またこのときの規格化された波動関数とはχ(r)について解けばいいのですか? 解き方を教えて下さい。

  • 粒子の取り得るエネルギーとは

    ポテンシャルV(r)が存在する空間において粒子が取り得るエネルギーを求めよという問題について質問があります。 シュレディンガー方程式 -h~^2/(2m)ΔΨ+V(r)Ψ=EΨ をE-V(r)=(h~k)^2/(2m)のようにして解いた時、エネルギー固有値Eだけがこの粒子が取り得るエネルギーとなるのでしょうか。それともエネルギー準位Eを計算から求めて、E-V(r)の値が粒子の取り得るエネルギーとなるのでしょうか。ニュートン力学ではエネルギー保存則より、全エネルギーE=運動エネルギーK+ポテンシャルエネルギーUのようにKとUに相互関係があるように、量子力学でのエネルギーとは場のポテンシャルの分も考慮したものを言うのですか?

このQ&Aのポイント
  • MG6530のヘッドクリーニングを行っても白紙印刷がされる理由を教えてください。
  • MG6530のヘッドクリーニングを行っても白紙印刷がされる原因について教えてください。
  • MG6530のヘッドクリーニングをしても白紙印刷がされるのはなぜでしょうか。
回答を見る