• 締切済み
  • すぐに回答を!

量子力学の問題

-L/2<=x<=L/2 (L>0)における質量mの自由粒子の量子力学的運動を考える。 波動関数は周期的境界条件を満たすとする。 運動量の間隔dpの中にある運動量の固有状態の数はほぼいくらになるか? ただし、Lは十分大きく、したがってdp>>2π(h/(2πL))であるとする。 この問題が良くわかりません。Lが十分大きいのだから固有状態は連続スペクトルになると思うのですが、固有状態の数はどのようにもとめたら良いのでしょうか?どなたかよろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数127
  • ありがとう数0

みんなの回答

  • 回答No.2

>単純に考えたら、dp*φ_p(x) (φ_p(x)は運動量の固有状態)という形になりそうなんですが、 えっと、何がその形になるんでしょう? 固有状態の数ですか? φ_p(x)は一般には複素数ですし、固有状態の数がxに依存するというのも意味が分からないでしょう。 簡単に言うと、周期的境界条件から、pの取りうる値が制限されるんです。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

>Lが十分大きいのだから固有状態は連続スペクトルになると思うのですが、 じゃぁ、実際に計算して見ましょうか。

共感・感謝の気持ちを伝えよう!

質問者からの補足

単純に考えたら、dp*φ_p(x) (φ_p(x)は運動量の固有状態)という形になりそうなんですが、あまり自身がありません。

関連するQ&A

  • 量子力学の問題についての質問です

    量子力学野問題について野質問です。 試験が近いのに解けなくて困っています。 どなたかお助け下さい。 以下問題です。 波動関数ψ(x,t)={1/(2π)^1/2}∫Φ(k)exp[i{kx-ω(k)t}]dk (積分範囲は-∞から∞です。) で与えられる自由粒子を考える。ただし、Φ(k)とω(k)はk野関数で、Φ(k)は Φ(k)=Aexp(-ka) (k≧0) , 0 (k<0) である。Aは規格化定数で、aは正の実定数である。以下の問に答えよ。 (1) ω(k)を求めよ (2) この粒子の運動量pをp>p0(ピーゼロ)に観測する確率を、p0,a,h-(エイチバー)を用いて表せ。ただし、p0>0とする。 です。 どなたかよろしくお願いいたします。

  • 量子力学の問題について質問です。

    量子力学の問題です。 一次元だけで考える。粒子の波動関数がAe^{(k/2)(x-c)^2} (A・k>0.cは実数の定数)であたえられている時、 (a)規格化条件からAを求めよ (b)xの期待値を求めよ (c)(x-c)^2の期待値を求めよ (d)運動量p=-ihd/dx の期待値を求めよ (e)上で求めた運動量の期待値をp₀とするとき、(p-p₀)^2の期待値を求めよ どなたかわかる方説明していただけるとありがたいです。

  • 量子力学

    猪木・川合著「量子力学I」p.162、または「基礎量子力学」p.131に 波動関数の規格化条件としてs>-1/2としてありますが s>-3/2のように思いますが、お教えくださいませんか。

  • 量子力学の問題で困っています

    量子力学の問題なのですが手元に資料が少なく、またネットで調べてもよくわからないので誰か教えて下さい。 1次元の調和振動子の規定状態の波動関数は一座表表示で次のように書ける Ψ(x,t) = Aexp(-2mωx^2/2h)exp(-iωt/2) これが調和振動子のシュレディンガー方程式の解であることを確かめなさい という問題なのですが調和振動子のシュレディンガー方程式というのは (-h^2/2m)d^2Ψ/dx^2 + mω^2x^2Ψ/2 = EΨ でいいのでしょうか? この方程式では時間の項を考慮していないように見えるのですが また、運動量の固有関数が f(x) = (1/√2πh)exp(ipx/h) であることを用いて、この波動関数Ψ(x,t)の運動量表示Φ(p,t)を求めなさい という問題も計算がうまくいかなくて困っています。教えていただけませんか? 式中のhは全てエイチバーです。よろしくお願いします

  • 量子力学の問題

    量子力学をやっていてわからないことがあったので質問します。 t=0で <(⊿x)^2><(⊿p)^2>=h^2/4 <x>=<p>=0 を満たす一次元自由粒子の波束について、<(⊿x)^2>_{t=0} を用いて<(⊿x)^2>_t を表せ。 という問題の解答として、 ハイゼンベルグの運動方程式より, dx(t)/dt = (1/ih)[x,H]  = (1/ih)[x,p^{2}/2m]  = p/m therefore x(t) = (p/m)t+x dp(t)/dt = (1/ih)[p,H] = 0 therefore p(t) = p となるから <(⊿x)^2>_t = <x(t)^2>-<x(t)>^2 = <((p/m)t+x)^2>-0 = (t^2/m^2)<p^2>+<x^2>+(t/m)<xp+px> …まではわかるのですが、ここから第3項が落ちる、というのがなぜかわかりません。どなたかわかる方、よろしくお願いします。

  • 量子力学の問題です。

    量子力学の問題です。 体積Vの領域内に閉じ込められた粒子の波動関数がAe^((i/h)p・r)で与えられている時、規格化条件からAの値を求めよ。 (波動関数の hはエイチバー  pとrは両方ともにベクトルです。入力の仕方が分からなくて上記のとおりに書いてしまいました。。。) 自分は物理を専攻している大学3年生です。そのレベルで分かるようにご説明していただけると幸いです。

  • 量子力学:観測後の位置・運動量の固有関数について

    量子力学のテキストなどによると、 位置の観測後、波動関数はデルタ関数に収縮する、とあります。 この後、このデルタ関数は徐々に時間と共に広がって崩壊して ゆき、この時の波束の様子を描いたものが画像のような関数だと 理解しています。 http://fairylandeureka.hp.infoseek.co.jp/hasoku.jpg  ここで質問なのですが、まず、 Q.1 この理解は正しいでしょうか? Q.2 正しいとすると、デルタ関数であるはずのこの波動関数は、   なぜ全範囲(-∞から∞)で積分したときに1になっていないの   でしょうか?   (波動関数の2乗の積分は間違いなく1になっています)  Q.3 αの値は何によって決まるのでしょうか?   この後、さらに運動量について観測を行うとします。 Q.4 この時、波束はどのような固有関数に収縮するのでしょうか?    具体的な固有関数の形を教えていただきたく思います。 Q.5 運動量観測後の粒子の存在確率密度はどのような関数に    よって与えられるのでしょうか? ※ 画像は『量子力学I/小出昭一郎/裳華房』のものです。 Q.2の積分が1にならない事は、この本をご参照いただくと   すぐにお分かりいただけるかと思います。   長年悩んでいる問題で、なんとか解決したく思っています。   質問が多いかもしれませんが、どうかよろしくお願いいたします。

  • 量子力学における状態について

    よく量子力学の本で"波動関数は量子力学的状態を表す"とありますが,"量子力学的状態"というのはどういうことなのでしょうか? Wikipediaでは"量子状態"の方で載ってありましたが,"すべての物理量の測定値が一定の確率分布をもつような仕方で系が準備されているとき、その系の状態を指してある量子状態という"とありました.

  • 量子力学の初歩的な問題です

    量子力学の初歩的な問題です 1.調和振動子の固有エネルギーを記せ 2.いわゆる箱型ポテンシャルの固有波動関数を記せ という問題を出されて困っています。 参考になるページかできれば答えを教えてもらえないでしょうか

  • 量子力学の問題

    次の問題の解答がわからなく困っています。 問)原点で段差がある1次元ポテンシャル V(x)=0 (x<0) 領域1 V(x)=V0 (0<x) 領域2 を考える。V0>0とする。左側の無限遠(x=-∞)から粒子が入射してくる場合を考える。 この自由粒子はエネルギーEをもつ。粒子のエネルギーがポテンシャルのエネルギーの大きさV0と比較して (1)V0<Eの場合と(2)V0>Eの場合について粒子が古典力学に従って運動する場合と量子力学に従って運動する場合について議論せよ。 という問題です、どうかよろしくお願いします。