• ベストアンサー
  • すぐに回答を!

量子力学の問題です

無限に広がる1次元空間を自由に運動する質量mの粒子を考える。 問 座標表示で考えるとき、運動量P'を微分演算子で表した式を記し、微分方程式                  P'Φ(x)=pΦ(x) を満たす、運動量固有値pに属する固有状態Φ(x)とする。系がこの運動量固有状態Φ(x)にあるとき 、座標の不確定性についいて説明せよ。 この問の前に座標と運動量の交換関係を求めたり、座標と運動量の間に成り立つ不確定性関係を記し、その意味を説明せよという問題がありそれは答えることができたのですが、上問をどのように解けばよいのか分かりません。どなたか回答もしくはヒントでもよろしいのでお願いします!!

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数70
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

「ΔP ΔX >= h`」 一方で「P Φ = p Φ:固有状態、すなわち ΔP==0」ならば「ΔX==∞」になると思うのですが。 もっと高度なことを考えていたのなら、無視してください。

共感・感謝の気持ちを伝えよう!

その他の回答 (1)

  • 回答No.2

なんか、参考書によく載っているレベルの話ですね。 ポアソン括弧の載っているような参考書を大学の図書室で探してみてください。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 量子力学について

    U(a)=exp[(2πi/h)P・a]のとき <x|U(a)=<x+a|となることを示せという問題がわかりません。(Pは運動量演算子 aはパラメータ hはプランク定数) ヒントにU(a)QU(a)^+ =Q+aというのがあり、これを使って両辺の固有値が等しくなることから示そうとしたのですが固有値が同じでも固有ベクトルは同じとは限らないよなと思い、いきずまってしまいました。 どなたか解説していただけないでしょうか。回答よろしくお願いします。

  • 量子力学(自由粒子)の質問

    少し問題を解いていて詰まったところがあるので、どなたかお助けください。ちなみにこの手の計算に関してはまだ初心者です。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 自由粒子では、運動量pとエネルギーE=p^2/2m の交換関係が成り立っているので、運動量とエネルギーの同時固有状態 | α(t) > というものが存在することが分かります。 そこで、この固有関数(位置表示+運動量表示)をブラケットを使いながら求めていきたいのですが、時間発展演算子を使って | α(t) > = exp(-iHt/h) | α(0) > = exp(-iEt/h) | α(0) > のようにまずしておきます。すると、固有関数は、 ψ(x,t) = < x | α(t)> = exp(-iEt/h)< x | α(0) > = exp(-iEt/h) exp(iPx/h) となります。最後の < x | α(0) > は、左が位置の固有状態、右が運動量の固有状態なので、位置と運動量の変換行列になっているということを使いました。 ここで質問なのですが、 < x | α(t)> も左が位置の固有状態で右が運動量の固有状態であることは間違いないと思います。この場合は何故位置と運動量の交換行列が使えなくて、右の時間依存性を取ったもの | α(0) > では使えるのでしょうか? (使える使えないうより、単にそういう風に計算すると普通に求めた固有関数と合うだけですが) 一応運動量表示の時もあやしいながら書いておきます。 ψ~(p,t) = < p | α(t)> = exp(-iEt/h)< p | α(0) > = exp(-iEt/h)< p | α(0) > = exp((-iEt/h) δ(p - P) 注) ・変数と区別するために t=0 のときの 運動量を P と書きました ・規格化定数書くとごちゃごちゃするので省きました ・こうすると、普通に計算したときの固有関数と合うのですが、何か間違えているかもしれないので、考え方に間違いがあればご指摘ください。 別の方法があればそれも教えていただきたいです。

  • 量子力学の問題

    -L/2<=x<=L/2 (L>0)における質量mの自由粒子の量子力学的運動を考える。 波動関数は周期的境界条件を満たすとする。 運動量の間隔dpの中にある運動量の固有状態の数はほぼいくらになるか? ただし、Lは十分大きく、したがってdp>>2π(h/(2πL))であるとする。 この問題が良くわかりません。Lが十分大きいのだから固有状態は連続スペクトルになると思うのですが、固有状態の数はどのようにもとめたら良いのでしょうか?どなたかよろしくお願いします。

  • 量子力学の問題

    ハミルトニアンが H=P^2/(2m) -FQ [P:運動量演算子 m:質量 F:一定の力 Q:位置演算子] であたえられるとき運動量表示のシュレディンガー方程式を書き下し,その波動関数Φ(p)を求めよという問題がわかりません。波動方程式は、               {p^2/(2m)-Fih d/dp}Φ=EΦ  [i:虚数 h:ディラック定数 エイチバーの代わりにhで表記します d/dp:pでの微分] でよいのでしょうか。 回答よろしくお願いします。

  • 量子力学~問題

    問. r^2=x^2+ y^2+ z^2と角運動量演算子(l=-ihr*∇)の交換関係を調べなさい。 という問題なのですが方針が分かりません。 ウィキペディアで調べて少し分かった気がするのですが、r^2=x^2+ y^2+ z^2をどこに利用するのかさっぱりです。 アドバイスお願いします http://ja.wikipedia.org/wiki/%E8%BB%8C%E9%81%93%E8%A7%92%E9%81%8B%E5%8B%95%E9%87%8F

  • 量子力学の問題

    次の問題の解答がわからなく困っています。 問)原点で段差がある1次元ポテンシャル V(x)=0 (x<0) 領域1 V(x)=V0 (0<x) 領域2 を考える。V0>0とする。左側の無限遠(x=-∞)から粒子が入射してくる場合を考える。 この自由粒子はエネルギーEをもつ。粒子のエネルギーがポテンシャルのエネルギーの大きさV0と比較して (1)V0<Eの場合と(2)V0>Eの場合について粒子が古典力学に従って運動する場合と量子力学に従って運動する場合について議論せよ。 という問題です、どうかよろしくお願いします。

  • 量子力学の基本的な質問

    量子力学の基本で混乱しています。 物理量の期待値についてなのですが、わからないことが次々と湧いてきてしまい、自分の理解の浅さに意気消沈 しています・・。 どなたか簡潔に御享受いただければと思います。 どの質問も非常に初歩的な内容ですが、当方、基本的な所で何かとんでもない勘違いをおかしているようなので、ご指摘いただければと思います。 (波動関数をF、複素共役をF*、物理量(演算子)をQ、固有値をq、2乗は^2、で書き質問します) 1 物理量Q(位置、運動量、エネルギー)の期待値は、 <Q>=∫F*Q Fdr で与えられる、とあります。 例えば『無限に深い井戸型のポテンシャルの問題』での基底状態について考えたとき、位置、運動量については「ばらつき」があることは理解できるのですが、エネルギーについては、明らかにE(1)という基底状態のエネルギーが確定してしまい、エネルギーについては「ばらつきがない」ように思えるのですが、どう考えればイイのでしょうか? 2 Qは固有関数、qは固有値、のとき   物理量Qの分散は ∫F*(Q-q)^2 Fdr=0 となり、 「これはある固有関数で表される状態で物理量Qを観測すると、それに対応する固有値qという確定値が得られることを意味する」  とあります。 分散の値が0になることより、確かに確定値が得られるであろうことは理解できるのですが、先ほどの井戸の問題を見るかぎり、位置、運動量についてはばらつきがあり 「確定しない」ように思えます。どう考えればイイのでしょうか? 以上、当方の確率解釈に対する誤解から生じる疑問なのでしょうが、自分が何をとらえ違えているのかわからずにいます。よろしくお願いします。

  • 量子力学2体問題

    量子力学の陽子と中性子が核力によって結合している2粒子系の状態についてです。 全質量と換算質量の2つのシュレディンガー方程式をたて、その次に換算質量についてのシュレディンガー方程式を動径部分と角度部分に分け(R(r)とY(θφ))動径部分について考えます。R(r)=χ(r)/rとしてχ(r)の微分方程式を求めました。 次に核力を表すポテンシャルとしてV(r)=∞(r<a) -V。(a<r<c) 0(c<r) の斥力芯を持つ井戸型ポテンシャル(V。>0)でb=c-aとして束縛状態が基底状態であるとするときエネルギー固有値を求める関係式を求める問題なのですが、このときの基底状態とはR(r)とY(θφ)についての微分方程式=λ(=l(l+1))とするとl=0としていいのなぜですか?その理由がよくわからないです。 またこのときの規格化された波動関数とはχ(r)について解けばいいのですか? 解き方を教えて下さい。

  • 量子力学の微分方程式の解

    量子力学の微分方程式の解 動径方向の微分方程式は(1)のようにかける。 固有関数は(2)のようにかけるとき、 パラメータaとエネルギー固有値Eを求めよ。 この問題↑を解いたのですが、 答えは(3)のようになりました。 これであっているでしょうか? また、エネルギー固有値をどう求めればよいか分かりません。 どなたか教えていただけるとうれしいです。

  • 量子力学的角運動量から量子数を導きたいのです

    気になって今朝から考えて調べているのですが どうも分かりません。 物理学辞典(培風館)で量子数について調べていると、 方位量子数と項目で次の内容の記述がありました。 軌道角運動量Lの固有値を以下の式で書いたときの非負の整数lをいう。 L = (h / 2pi) sqrt{l(l + 1)} なぜ軌道角運動量の固有値が以下になるのか 実際に計算してみようと思い、軌道角運動量 を同辞典で調べ、位置ベクトル(x,y,z)、 運動量p= - j (h / 2pi) nablaとする場合の 軌道角運動量(ベクトル)が以下のようになりました。 | i j k | L = -im * det | x y z | | d/dx d/dy d/dz | ここで im は虚数、h はプランク定数、 piは円周率、i,j,kはデカルト座標の基底ベクトル、 nablaは(di/dx + dj/dy + dk/dz)、 d/dx は x での偏微分、det は行列式を表しています。 線形代数では行列を用いて固有値lambdaを求めたことが あります。しかし軌道角運動量Lはベクトルです。 Wikipediaで調べると、固有関数が球面調和関数で、 そこから固有値が求まるように説明されていました。 途中の量子力学(交換関係)と球座標系への座標変換、 球面調和関数が分からず、悪戦苦闘しております。 どなたかご教授願えませんでしょうか? 参考文献やWebページも教えて下さると 大変助かります。