ベストアンサー 2階線形方程式 2006/06/03 22:37 ωを実数とする、2階線形方程式 x"+ω^2x=0 を連立1階線形方程式に書き直すには、どうしたら よいのでしょうか? 教えてください。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー kabaokaba ベストアンサー率51% (724/1416) 2006/06/04 09:06 回答No.1 y=x' 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 線形2階微分方程式と非線形2階微分方程式の違いは? 数学用語の意味の違いがいまいちつかめません。 (1)【線形2階微分方程式】 未知数y(x)とその導関数y'(x),y''(x)についての線形の微分方程式 y''+p(x)y'+q(x)y=f(x) を 2階線形微分方程式という.最も簡単な例として d^2f(x)/dx^2=0 がある。 (2)【非線形2階微分方程式】 非線形2階微分方程式の定義がテキストには載っていなかったのですが、 y''+p(x)y'+q(x)y ノットイコール f(x) が非線形2階微分方程式ということでしょうか? (1)と(2)の違いがどこにあるのか、はっきりせずにモヤモヤしているので、 スッキリさせたいです。どなたか数学に詳しい方がいらっしゃれば、 どうかご教授下さい。よろしくお願いします。 1階線形微分方程式 y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題なのですが1階線形になることは示せたのですが、その次の1階線形微分方程式の解法がよく分かりません。 教えてください。よろしくお願いします。 ↓ y'-2y/x=xy^3 y'/y^3-2/xy^2=x u=1/y^2とおく ∴u'=-2y'/y^3 これを上式に代入すると -u'/2-2u/x=x ⇔u'+4u/x=-2x 線形一階方程式 数学の課題で、 置換 z=y^(1-n)により、ベルヌーイの方程式 y′+P(x)y=Q(x)y^n はzについての線形一階方程式に変えられることを示せ。 という問題が出たのですが、解き方が分かりません。回答をよろしくお願いします。 微分方程式 線形 非線形 前回の質問の続きです。 前回の質問内容:http://okwave.jp/qa/q7818206.html ラプラス方程式が、2階線形偏微分方程式、 ポアソン方程式が、2階非線形偏微分方程式であることは 理解できました。ありがとうございます。 微分方程式で参考書やインターネットにあった線形微分方程式と 非線形微分方程式を以下に示します。 線形微分方程式 (1)y”+y’-2x=0 (2)y’+xy=1 (3)(x-1)y''-xy'+y=0 非線形微分方程式 (1)(y”)^2+y’-2x=0 (2)x(y”’)^3+y’=3 (3)y・y’+xy=1 上記、線形/非線形の分類に間違いはあるでしょうか? 非線形微分方程式の(3)y・y’+xy=1は、なぜ非線形となるのでしょうか? y・y’+xy=1⇒y’+x=1/y⇒y’+x-1/y=0は線形ではないでしょうか? 線形微分方程式(2)y’+xy=1も、xy’+xy=1となると非線形になるの でしょうか? ご回答よろしくお願い致します。 非斉次な2階の線形微分方程式 fを実数として、非斉次な2階の線形微分方程式を積分定数を用いて解け。(xはtの関数) (d^2x/dt^2)+9x=fe^(2it) x=Ae^(2it)とすると、 A=f/5 ここからどうすればよいかわかりません。 詳しい解説お願いします。 非斉次な2階の線形微分方程式 fを実数として、非斉次な2階の線形微分方程式を積分定数を用いて解け。(xはtの関数) (d^2x/dt^2)+9x=fe^(3it) x=Ae^(3it)とすると、 0A=f ここからどうすればよいかわかりません。 詳しい解説お願いします。 2階線形同次微分方程式について。 2階線形同次微分方程式について。 解が複素解の場合の質問です。 複素解λ1,2をもつ時、一般解は、Z(X)=C10e^λ1x+C20e^λ2x となり、これを整理すると、 y(X)=e^(-ax/2)[C1cos(√(―a^2+4b)x/2)+C2sin(√(―a^2+4b)x/2)] となるとのことです。そこで、教科書にC1=C10+C20の実数部分 C2=iC10-iC20の実数部分 と書いてあります。 この実数部分とはどういうことなのですか? なぜ実数部分なのですか? よくわかりません。 どうぞよろしくお願いいたします。 どうぞよろしくお願いいたします。 微分方程式 線形 非線形 微分方程式における線形と非線形について質問させて頂きます。 線形と非線形では何が違うのでしょうか? 1階線形常微分方程式が線形なのはわかるのですが、2階線形常微分方程式は 2階なのになぜ線形なのでしょうか? また、∇は後ろに関数を持ってきて1階の偏微分という演算を行います。 これは線形なのでしょうか? Δ(ラプラシアン)は後ろに関数をもってきて2階の偏微分という演算を行います。 ラプラス方程式やポアソン方程式も線形なのでしょうか? 線形微分方程式の問題に関していくつか当たったのですが、線形なのか非線形なのか がどのように使い分けられるのかわかりません・・・ 以上、ご回答よろしくお願い致します。 2階線形微分方程式は縮退は2まで? 数学カテゴリで質問すべきか迷ったんですが、ここで質問させてください。一次元シュレーディンガー方程式などの2階線形常微分方程式では解の縮退は最大で2である、とあるんですがなぜでしょうか? 2階線形常微分方程式は二つの独立解の線形結合で表せるから、などと聞きましたが、どうも理解できません…よろしくお願いします! (補足質問:2階線形常微分方程式は二つの独立解の線形結合で表せる、というのは積分定数が2つ出るから、と記憶してます。ということは、2階線形常微分方程式の解は常に二つの基底で展開できるということですよね?) 2階非同次線形方程式 次の2階線形の微分方程式の特殊解が答えと一致しないので分かる方、教えて下さい。 y''-2y'+y=(e^x)/(√(1-x^2)) 同次方程式として y''-2y'+y=0を解き、λ^2-2λ+1=0からλ=1の重根を出し、ロンスキアンを使う。そして定数変化法により、特殊解を求めたいと思っていますが、ならないのでお願いします。 答えは y=(c1+c2x+√(1-x^2)+xarcsinx)e^x になっている。 線形微分方程式について 微分方程式の分類に関して、 線形…y(x)及びその微分について一次までのもの。 と手元の資料には書いてるんですが、 これはy(x)もしくはdy(x)/dx のみを含んでいる、ということですか? 調べてみると、斉次2階微分方程式なるものもあるようで困っています。(斉次ということは線形ですよね?2次が含まれていていいんでしょうか?) 一階の線形微分方程式 の形について、 この前の授業で先生が、求めるものがy(t)にもかかわらず y(t) = C * x'(t) の式について、 これは一階の線形微分方程式 といっていました。 ここで疑問に思ったのが、 私は、求めるのがy(t)ならば、yのみの式の形に着目して、 y(t) = C * x'(t)は 0階の微分方程式 となると思っていたのですが、 このときも一階の微分方程式といえるのでしょうか、 先生が正しいとすると、、、 求めるのがy(t)のとき y''(t) + y(t) = x'''(t) このような式は何階になるのでしょうか、、、 よろしくおねがいします。 微分方程式の線形、非線形の証明 「y' * y'' = 1 …(*) という微分方程式が線形であるか、非線形であるかを証明せよ。」 (ただし、*は掛け算、y'はxの1階微分、y''はxの2階微分であるとする。) 【自分の考察】 2階線形微分方程式の定義は、 P0(x)y'' + P1(x)y' + P2(x)y = Q(x) であるので、(*)はこの形に当てはまらず、 y' * y'' 同士の掛け算になっているので、 『非線形』だと思う。 ここまでは、予想がついたのですが、 もっと数学的に証明することはできるのかと 疑問に思いまして、質問させていただきました。 線形関数で学習した、 f(x1 + x2) =f(x1) + f(x2) f(ax) = af(x) などを、使うのかと思ったのですが、 よくわかりません。 簡単そうに見えるのに、 まだ先が見えてこないので、 どなたかご教授いただければと思います。 よろしくお願いします。 1階線形微分方程式の公式は暗記するもの? 現在、微分方程式を勉強しています。 1階線形微分方程式の公式(y=1/h(x){∫g(x)h(x)+C})は暗記するものなのでしょうか? 導き方が覚えられるくらいのものなら、わざわざ丸暗記はしたくないのですが…。 非線形微分方程式の特異点 次の連立微分方程式について回答お願いします dx/dt = -x+y dx/dt = 2x+1-e^y 1,特異点を求める 2,特異点の近傍でe^yを一次の項まで近似し、方程式を線形化 3,線形化した方程式をベクトル表示 4,特性方程式(固有方程式)を解き、固有値を求める 5,この連立方程式の特異点のタイプは何か 非線形連立方程式の解 数学に詳しい方、どなたか教えて下さい。 下記のような非線形連立方程式を解こうと、エクセルのソルバーを使って試みましたが、 解が得られませんでした。 ちなみに初期値は(x,y)=(1,1)で実行しました。 12171060/e^((0.03+x)/y)+4847040/e^((0.06+x)/y)+762696/e^((0.09+x)/y)-1=0 …(1) 13523400/e^((0.02+x)/y)+5385600/e^((0.04+x)/y)+847440/e^((0.06+x)/y)-1=0 …(2) 非線形連立方程式の解法、解がある条件などについてまったくの無知な為、 本当に解がないのか、単に初期値の設定が悪いために収束しないのか判断できません。 この方程式に解があるのかどうか、解が存在するのならどうやれば数値的に求められるのか、 どなたか教えて頂けますでしょうか。 線形でない2階微分方程式 はじめまして。 線形でない2階微分方程式についての質問なのですが y'’=f(x,y') y'=f(y,y') これらの形の微分方程式を解くとき 微分方程式を見て、実際どちらの形かわからないものがあります・・・。 たとえば、 y''=yy' の場合であれば、後者のほうの形ですが y''=y^2 の場合であると、前者と、後者どちらでも可能なきがするのですが どうなのでしょうか?? 意味不明な質問かもしれないですがよろしくお願いしますm(__)m 2階同時線形微分方程式について質問させて下さい。 y"(x)+ay'(x)+by(x)=0 なる2階同時線形微分方程式には、 2個の線形独立な解が存在する。 但し、aおよびbは定数であり、 y(x)はxの関数である。 上記の定理の証明について教えてください。 よろしくお願いいたします! 1階線形微分方程式の問題です 1階線形微分方程式の問題です (d/dy)f(x,y)=-(4/y)f(x,y)+{8x/(πy^3)}arccos(x/2y) の一般解を求める、という問題がわかりません。 わかる方は教えてください 運動方程式って線形ですか 何と言っていいかよくわからないのですが、多自由度系の普通の運動方程式 [M]x" + [C]x' + [K]x = f(t)があります([]はマトリクス)。 自由振動は外力ゼロの状態をいうのでf(t)=0として求めた固有値が固有角振動数及び減衰になります。この固有値が非線形パラメータだと書いてあるサイトがありますが意味が分かりません。 通常こういった形の式は2階線形の微分方程式と言われるので線形だと思っていました。しかし線形の条件はf(x+y)=f(x)+f(y)、c・f(x)=f(c・x)を満たすものとありますが、そうなっているのかどうかよくわかりません。 1.上記の運動方程式って非線形なのでしょうか? 2.上記の運動方程式が線形か非線形は「Cマトリクスがゼロの場合」「MKマトリクスの線形結合で表せる場合」「CマトリクスがMKマトリクスの線形結合で表せない場合」の3ケースで異なるのでしょうか?