• 締切済み
  • 困ってます

線形でない2階微分方程式

はじめまして。 線形でない2階微分方程式についての質問なのですが      y'’=f(x,y')      y'=f(y,y') これらの形の微分方程式を解くとき 微分方程式を見て、実際どちらの形かわからないものがあります・・・。 たとえば、 y''=yy' の場合であれば、後者のほうの形ですが      y''=y^2 の場合であると、前者と、後者どちらでも可能なきがするのですが どうなのでしょうか?? 意味不明な質問かもしれないですがよろしくお願いしますm(__)m

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.2

2番目の式は、 y''=f(y,y') のことなんだろうと思いますが。 仰るとおり、y''=y^2 はどちらとも取れます。 どちらか好きなほうの解法でOKです。 当然ですが、どちらで解いても同じ解になります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

すみませんm(__)m 仰るとおり、y''=f(y,y')でした。 そして、もうひとつ訂正なのですが y''=(y')^2だと前者、後者どちらの式もとれるでしょうか? という質問でした・・。 すみません。 rabbit_catさんは、 y''=y^2は両方とれると お書きになっていますが、それはなぜでしょうか?? 質問ぜめですみません。

  • 回答No.1
  • N64
  • ベストアンサー率25% (160/622)

2番目の方程式は、y'=f(y,y') で合っていますか? y''=f(y,y') ではないですね?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

すみませんm(__)m 仰るとおりy''=f(y,y')でした。 上にも書きましたが訂正があります・・・。 y''=y^2 ではなく y''=(y')^2の場合でした。 申し訳ございません。

関連するQ&A

  • 線形2階微分方程式と非線形2階微分方程式の違いは?

    数学用語の意味の違いがいまいちつかめません。 (1)【線形2階微分方程式】 未知数y(x)とその導関数y'(x),y''(x)についての線形の微分方程式    y''+p(x)y'+q(x)y=f(x) を 2階線形微分方程式という.最も簡単な例として d^2f(x)/dx^2=0 がある。 (2)【非線形2階微分方程式】 非線形2階微分方程式の定義がテキストには載っていなかったのですが、    y''+p(x)y'+q(x)y ノットイコール f(x) が非線形2階微分方程式ということでしょうか? (1)と(2)の違いがどこにあるのか、はっきりせずにモヤモヤしているので、 スッキリさせたいです。どなたか数学に詳しい方がいらっしゃれば、 どうかご教授下さい。よろしくお願いします。

  • 微分方程式の線形、非線形の証明

    「y' * y'' = 1  …(*) という微分方程式が線形であるか、非線形であるかを証明せよ。」 (ただし、*は掛け算、y'はxの1階微分、y''はxの2階微分であるとする。) 【自分の考察】 2階線形微分方程式の定義は、 P0(x)y'' + P1(x)y' + P2(x)y = Q(x) であるので、(*)はこの形に当てはまらず、 y' * y'' 同士の掛け算になっているので、 『非線形』だと思う。 ここまでは、予想がついたのですが、 もっと数学的に証明することはできるのかと 疑問に思いまして、質問させていただきました。 線形関数で学習した、 f(x1 + x2) =f(x1) + f(x2) f(ax) = af(x) などを、使うのかと思ったのですが、 よくわかりません。 簡単そうに見えるのに、 まだ先が見えてこないので、 どなたかご教授いただければと思います。 よろしくお願いします。

  • 微分方程式 線形 非線形

    前回の質問の続きです。 前回の質問内容:http://okwave.jp/qa/q7818206.html ラプラス方程式が、2階線形偏微分方程式、 ポアソン方程式が、2階非線形偏微分方程式であることは 理解できました。ありがとうございます。 微分方程式で参考書やインターネットにあった線形微分方程式と 非線形微分方程式を以下に示します。 線形微分方程式 (1)y”+y’-2x=0 (2)y’+xy=1 (3)(x-1)y''-xy'+y=0 非線形微分方程式 (1)(y”)^2+y’-2x=0 (2)x(y”’)^3+y’=3 (3)y・y’+xy=1 上記、線形/非線形の分類に間違いはあるでしょうか? 非線形微分方程式の(3)y・y’+xy=1は、なぜ非線形となるのでしょうか? y・y’+xy=1⇒y’+x=1/y⇒y’+x-1/y=0は線形ではないでしょうか? 線形微分方程式(2)y’+xy=1も、xy’+xy=1となると非線形になるの でしょうか? ご回答よろしくお願い致します。

  • 1階線形微分方程式

    y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題なのですが1階線形になることは示せたのですが、その次の1階線形微分方程式の解法がよく分かりません。 教えてください。よろしくお願いします。 ↓ y'-2y/x=xy^3 y'/y^3-2/xy^2=x u=1/y^2とおく ∴u'=-2y'/y^3 これを上式に代入すると -u'/2-2u/x=x ⇔u'+4u/x=-2x

  • 微分方程式 線形 非線形 その2

    前回の質問内容で、 y・y’+xy=1 が非線形微分方程式であることは理解できました。 >yy' は、y と y' が 1 次づつの積で { y,y',y'',y''',… } については 2 次、 >xy' は、{ y,y',y'',y''',… } に含まれるのが y だけで 1 次です。 ご回答頂いた内容を整理している際に、疑問に感じた点があったので再度 質問させて頂きます。 y’+xy=1 は線形微分方程式ですが、 y’+(x/y)=1も線形微分方程式でしょうか? (x/y)は、yを1次として考えて線形微分方程式なのでは と考えたのですが、正しいでしょうか? 1/yは非線形になるのでしょうか? 同様に、 1/y’+xy=1は非線形微分方程式となるのでしょうか? 1/y,1/y’が線形なのか非線形になるのかがわかりません。 ご回答よろしくお願い致します。

  • 一階の線形微分方程式 の形について、

    この前の授業で先生が、求めるものがy(t)にもかかわらず y(t) = C * x'(t) の式について、 これは一階の線形微分方程式 といっていました。 ここで疑問に思ったのが、 私は、求めるのがy(t)ならば、yのみの式の形に着目して、 y(t) = C * x'(t)は 0階の微分方程式 となると思っていたのですが、 このときも一階の微分方程式といえるのでしょうか、 先生が正しいとすると、、、 求めるのがy(t)のとき y''(t) + y(t) = x'''(t) このような式は何階になるのでしょうか、、、 よろしくおねがいします。

  • 1階線形微分方程式の問題です

    1階線形微分方程式の問題です (d/dy)f(x,y)=-(4/y)f(x,y)+{8x/(πy^3)}arccos(x/2y) の一般解を求める、という問題がわかりません。 わかる方は教えてください

  • 線形微分方程式について

    微分方程式の分類に関して、 線形…y(x)及びその微分について一次までのもの。 と手元の資料には書いてるんですが、 これはy(x)もしくはdy(x)/dx のみを含んでいる、ということですか? 調べてみると、斉次2階微分方程式なるものもあるようで困っています。(斉次ということは線形ですよね?2次が含まれていていいんでしょうか?)

  • 微分方程式

    y’-y=-xをとく場合一階線形微分方程式 の形と似てるからY’+P(X)Y=Q(X)の形と説く方法同じですよね?

  • 2階線形微分方程式の置き換えについて質問です

    先日、2階線形微分方程式(未知関数y(x))の解法として、 u(x) = xy(x) …(a) としていた問題がありました。しかし、その問題集が現在見当たらず、どのような場合にこの置き換えが有効なのかがわかりません 手元にある常微分方程式に関する本を見ても載っていませんでした (a)の置き換えがどのような形の微分方程式に有効か教えていただきたいです また、(a)の置き換えが単なる私の思い違いの場合は、ご指摘をお願いします