• 締切済み
  • 困ってます

1階線形微分方程式

y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題なのですが1階線形になることは示せたのですが、その次の1階線形微分方程式の解法がよく分かりません。 教えてください。よろしくお願いします。 ↓ y'-2y/x=xy^3 y'/y^3-2/xy^2=x u=1/y^2とおく ∴u'=-2y'/y^3 これを上式に代入すると -u'/2-2u/x=x ⇔u'+4u/x=-2x

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数155
  • ありがとう数0

みんなの回答

  • 回答No.2
  • alice_44
  • ベストアンサー率44% (2109/4758)

いわゆる「定数変化法」をやってみる。 u' + 4u/x = -2x よりも、両辺を x 倍して xu' + 4u = -2x^2 のほうが少し扱い安いかな。 斉次化方程式 xv' + 4v = 0 は、変数分離形なので 容易に解けて、v'/v = -4/x より、log v = -4 log x すなわち v = C/x^4 (C は定数) となる。 v の積分定数を変数で置き換えた u = w/x^4 と置いて 原式ヘ代入すると、w' = -2x^5 すなわち w = (-1/3)x^6 + D (D は定数)。 w を消去すれば u = (-1/3)x^2 + D/x^4 となる。 1/y^2 = u へ代入すると、y = (±√3)(x^2)/√(E - x^6)。 E は定数(E=3D)で、初期条件により定まる。 右辺先頭の ± も初期条件で定まる。

共感・感謝の気持ちを伝えよう!

質問者からの補足

w' = -2x^5の過程がよく分かりません。 できれば教えていただけるとありがたいです。

関連するQ&A

  • 微分方程式

    y’-2/xy = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題を教えて下さい。 よろしくお願いします。

  • <微分方程式>

    y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題を教えて下さい。 よろしくお願いします。

  • 1階の線形微分方程式

    1階の線形微分方程式 次の微分方程式の解き方が分かりません。いちおう、自分でもやりましたが、答えを先生が教えてくれないので困っています。さらに(3)はさっぱりです。 (1)y'+2y=6e^x (2)y'+y=sinx (3)xy'-2y=x^3e^x (1),(2)の自分なりで解いてみた答え (1) λ+2=0 λ= -2 よってこの微分方程式の一般解は y1=Ce^-2x ここで、yp=k1*e^x とおいて、ypを微分方程式内に代入をすると、 yp'+2yp=k1*e^x+2k1*e^x=3k1*e^x=6e^x k1=2 y2=2e^x よって y=y1+y2=C*e^-2x+2e^x (2) λ+1=0 λ= -1 よって、求める一般解は y1=Ce^-x ここで、特殊解を考えると yp=L*sinx+M*cosx yp'=L*cosx-M*sinx これを微分方程式に代入して yp'+yp=(L*sinx+M*cosx)+(L*cosx-M*sinx)=(L-M)sinx+(L+M)cosx ここで、 L-M=1 L+M=0 これを解いて L=1/2,M=-1/2 y2=1/2*sinx-1/2*cosx よって、y=y1+y2=Ce^-x+1/2*sinx-1/2*cosx

  • 回答No.1
  • k3eric
  • ベストアンサー率38% (8/21)

多分これで合ってると思うのですが… https://pbs.twimg.com/media/A51AjEsCIAA7qX3.jpg:large

参考URL:
https://pbs.twimg.com/media/A51AjEsCIAA7qX3.jpg:large

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 微分方程式 1階線形

    y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 という問題なのですが一応解いてみたのですが合っているのかいまいち分かりません。 間違っている箇所があれば教えてください。 よろしくお願いします。 ↓ y’/y^3-2/x・1/y^2=x 1/y^2=uとおくと、 du/dx=du/dy・dy/dx du/dx=(-2/y^3)・y’ du/dx=-2y’/y^3 となりますから、 y’/y^3=-1/2 du/dx よって、元式に代入すると、 -1/2 du/dx-2/x u=x …(1) 定数変化法を用いる。斉次形の解をまず求める -1/2 du/dx-2/x u=0 du/dx=-4u/x ∫du/u=-4∫dx/x ln|u|=-4ln|x|+C1 u=±e^(-4ln|x|+C1) u=Cx^(-4) Cがxの関数であったものとして、非斉次形の解を求める。 C=p(pはxの関数)とおくと、 du/dx=p’x^(-4)-4px^(-5) ですから、(1)にそれぞれ代入して、 -1/2 {p’x^(-4)-4px^(-5)}-2/x px^(-4)=x -1/2 p’x^(-4)+2px^(-5)-2px^(-5)=x -1/2 dp/dx=x^5 ∫dp=-2∫x^5 dx p=-1/3 x^6+C 従って、 u=(-1/3 x^6+C)x^(-4) u=-1/3 x^2+Cx^(-4) となるから、1/y^2=uより、 1/y^2=-1/3 x^2+Cx^(-4)

  • 1階線形微分方程式の問題です

    1階線形微分方程式の問題です (d/dy)f(x,y)=-(4/y)f(x,y)+{8x/(πy^3)}arccos(x/2y) の一般解を求める、という問題がわかりません。 わかる方は教えてください

  • 非同次線形微分方程式の解

    非同次線形微分方程式の解は、 「同次線形微分方程式の一般解+特殊解」 だと思うのですが、このとき、 「【同次線形微分方程式の一般解】は、非同次線形微分方程式の解である。」と言えるのでしょうか?

  • 微分方程式

    微分方程式 dy/dx-2xy=2xy~2 について。 (1)z=1/yとするとき、z=z(x)が満たす微分方程式を求めよ (2)(1)で求めたzに対する微分方程式の一般解を求めよ (3)yの一般解および特殊解を求めよ という問題があります。 これは教科書にあるような、微分方程式の公式を用いて解くのでしょうか よく分からないので詳しく教えてください。

  • 解けませんこの微分方程式

    いつもお世話になっています。 独学でなんとか線形微分方程式や同次型まで理解しています。今 y'+(1/x)y+y^2-1/x^2=0 という方程式を解こうとしています。特殊解はとりあえず1/xが見つかりました。問題は一般解を求めるのですが、試しに最終的に求めたい 線形結合の解yをy=k+1/xとおいて(kが一般解です)代入し、 kとxの微分方程式を作りました。 果たしてここまであっているのかわからないのですが、ここから手が止まっています。また変数変換したりするのでしょうか。 わかる方詳しく教えていただけないでしょうか。お願いします。

  • 微分方程式

    dx/dt=a^2-x^2 (aは実数の定数) (1)この微分方程式は1階の線形同次・線形非同次・非線形のどれにあてはまるか。 (2)この微分方程式の一般解を変数分離法で求めよ。 考えたことは(1)は非線形だと思いますが、合っていますか? (2)はdx/(x^2-a^2)=-dtと変形し、両辺積分します。  すると、1/(2a)log(|x-a|/|x+a|) = -t + C このあとx=が分からないです。 教えてください。お願いします

  • 微分方程式

    微分方程式 以下の方程式の解がわかりません。色々調べてはみたのですが。 どうやら1階の微分方程式に帰着できるようです。 xy''+y'=4x (1+x^2)y''+2xy'=2/x^3 大変お手数ですが、どなたかわかる方ご教授願います。 よろしくお願いします。

  • 1階非同次線形微分方程式の解法について

    難しすぎてよくわからないので質問します。 いろんなサイトを見てもよくわからなかったので分かりやすい回答おねがいします。 みなさんから見れば、なぜこんなことも分からないの、なにを言っているの?と思うのかもしれませんが、丁寧に解説してくれるとありがたいです。 非同次方程式の一般解=同次方程式の一般解+非同次方程式の特殊解となるようですが、 なぜこれが成り立つのかわかりません。 いろんなサイトみたのですが、数式がいっぱい書いてあってなにがなんだかわからない状態です。 まだ、変数分離の解法しかやっていないので、難しいことを言われても分からなくなってしまいます。 まず、1階線形微分方程式は、dy/dx+f(x)y=g(x)などのように表されるということは分かりました。 そしてこのg(x)を0としたものが非同次となるわけですよね。 つまり、dy/dx+f(x)=0です。 そしてこの解法として、まずy=u(x)が同次方程式の一般解としようと書いてあります。 ですが、もうこの時点でよくわからないです。 なぜ一般解としようと考えたのかってとこに疑問があります。 特殊解でもなく、なぜ一般解なのかということです。 そして、これを代入すると、du(x)/dx+f(x)u(x)=0となるのはわかります。 ただ代入するだけなので。 次に、y=v(x)を非同次方程式の特殊解としようと書いてあります。 でもなぜ非同次方程式の特殊解にするのかわかりません。 同次方程式の特殊解と考えてはだめなのかと思ってしまします。 まさか適当においたとも思えませんし。 なにかの考えがあってのことだと思いますし。 ようするに、なぜこのようにおいたのか、道筋というか目的ってのがよく見えないのです。 いったいなにをやっているのか。 たぶん一般解と特殊解の関係?みたいなのがわかっていないので、悩んでいるような気がします。 つまり、 非同次方程式の一般解=同次方程式の一般解+同次方程式の特殊解とおくことはできないのかと。 質問の意味あまりわからないかもしれませんが、すいません。 わからなすぎて、なにが分からないのかもわからない状態で。 丁寧に解説してくれるとありがたいです。

  • 微分方程式

    次の微分方程式の一般解を求めよ。 2x+y+(x-2y)y'=0 u=y/xとおいて u'x=(-2-2u+2u^2)/(1-2u) ∫(1-2u)/(2-2u+2u^2)du=∫1/xdx -1/2∫(-2+4u)/(2-2u+2u^2)du=∫1/xdx log|(2-2u+2u^2)^-1/2|=log|x|+C log|{(2-2u+2u^2)^-1/2}/x|=C (2-2u+2u^2)^-1/2=Cx 2y-2xy-2x^2=1/c^2 2y-2xy-2x^2=c こうなったのですが、答えが違います。 この計算方法は間違っているでしょうか?? 特に -1/2∫(-2+4u)/(2-2u+2u^2)du=∫1/xdx log|(2-2u+2u^2)^-1/2|=log|x|+C log|{(2-2u+2u^2)^-1/2}/x|=C ここらへんがよくわかりません。

  • 微分方程式 線形 非線形 その2

    前回の質問内容で、 y・y’+xy=1 が非線形微分方程式であることは理解できました。 >yy' は、y と y' が 1 次づつの積で { y,y',y'',y''',… } については 2 次、 >xy' は、{ y,y',y'',y''',… } に含まれるのが y だけで 1 次です。 ご回答頂いた内容を整理している際に、疑問に感じた点があったので再度 質問させて頂きます。 y’+xy=1 は線形微分方程式ですが、 y’+(x/y)=1も線形微分方程式でしょうか? (x/y)は、yを1次として考えて線形微分方程式なのでは と考えたのですが、正しいでしょうか? 1/yは非線形になるのでしょうか? 同様に、 1/y’+xy=1は非線形微分方程式となるのでしょうか? 1/y,1/y’が線形なのか非線形になるのかがわかりません。 ご回答よろしくお願い致します。

専門家に質問してみよう