• ベストアンサー
  • すぐに回答を!

線形2階微分方程式と非線形2階微分方程式の違いは?

数学用語の意味の違いがいまいちつかめません。 (1)【線形2階微分方程式】 未知数y(x)とその導関数y'(x),y''(x)についての線形の微分方程式    y''+p(x)y'+q(x)y=f(x) を 2階線形微分方程式という.最も簡単な例として d^2f(x)/dx^2=0 がある。 (2)【非線形2階微分方程式】 非線形2階微分方程式の定義がテキストには載っていなかったのですが、    y''+p(x)y'+q(x)y ノットイコール f(x) が非線形2階微分方程式ということでしょうか? (1)と(2)の違いがどこにあるのか、はっきりせずにモヤモヤしているので、 スッキリさせたいです。どなたか数学に詳しい方がいらっしゃれば、 どうかご教授下さい。よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • zk43
  • ベストアンサー率53% (253/470)

線形微分方程式は、y''+p(x)y'+q(x)y=f(x) など、微分演算子を、D=Dxx+p(x)Dx+q(x)のように ひとつにまとめて、 Dy=f(x) のように書けるものです。 ここに、Dxxはxで2回微分、Dxはxで1回微分することを意味する。 関数全体の空間をベクトル空間と見て、 Dは関数空間の間の線形写像になっているから線形微分方程式 といいます。 一方、y''y+y'=f(x)のようなものは、Dy=f(x)の形に書けないので、 線形微分方程式とは言いません。 要するに、y,y',y'',…の線形結合=f(x)のタイプが線形微分方程式 で、そうでないものが、非線形微分方程式です。

共感・感謝の気持ちを伝えよう!

その他の回答 (2)

  • 回答No.2

 簡単に言います。  y、y’、y’’同士の掛け算がなければ線形、あれば非線形です。 (非線形の例)  y^2、yy'、y'^2、y'y''、yy''、y''^2、y^3、yy'y'' など

共感・感謝の気持ちを伝えよう!

質問者からのお礼

わかりやすくて、感動しました! 友だちに自慢できます笑。 ありがとうございました。

  • 回答No.1
  • Ae610
  • ベストアンサー率25% (385/1500)

未知関数yその導関数y'(x),y''(x)について1次式のとき線形 y''+p(x)y'+q(x)y=f(x)は線形 未知関数yその導関数y'(x),y''(x)について1次式になっていないとき非線形 例えば非線形の例: y'y''+p(x)y'+q(x)y^2=f(x) y''+μ(y^2-1)y'+y=0・・・van der pol方程式

共感・感謝の気持ちを伝えよう!

質問者からのお礼

とてもわかりやすいご解説、 ありがとうございました。 これでスッキリしました!

関連するQ&A

  • 微分方程式の線形、非線形の証明

    「y' * y'' = 1  …(*) という微分方程式が線形であるか、非線形であるかを証明せよ。」 (ただし、*は掛け算、y'はxの1階微分、y''はxの2階微分であるとする。) 【自分の考察】 2階線形微分方程式の定義は、 P0(x)y'' + P1(x)y' + P2(x)y = Q(x) であるので、(*)はこの形に当てはまらず、 y' * y'' 同士の掛け算になっているので、 『非線形』だと思う。 ここまでは、予想がついたのですが、 もっと数学的に証明することはできるのかと 疑問に思いまして、質問させていただきました。 線形関数で学習した、 f(x1 + x2) =f(x1) + f(x2) f(ax) = af(x) などを、使うのかと思ったのですが、 よくわかりません。 簡単そうに見えるのに、 まだ先が見えてこないので、 どなたかご教授いただければと思います。 よろしくお願いします。

  • 線形微分方程式の定義

    線形微分方程式の定義というのは、以下のもので認識しているのですが、 これであっているのでしょうか? (検索しても、とくに「定義」として書かれているものは少なく、 自分の「定義」の認識が違っていると大変なので…。) n階の微分方程式が P0(x) d^ny/dx^n + P1(x) d~n-1y/dx^n-1 + … + Pn-1(x)dy/dx +Pn(x)y = Q(x) のかたちをしているとき、これを線形微分方程式という。

  • 微分方程式 線形 非線形

    前回の質問の続きです。 前回の質問内容:http://okwave.jp/qa/q7818206.html ラプラス方程式が、2階線形偏微分方程式、 ポアソン方程式が、2階非線形偏微分方程式であることは 理解できました。ありがとうございます。 微分方程式で参考書やインターネットにあった線形微分方程式と 非線形微分方程式を以下に示します。 線形微分方程式 (1)y”+y’-2x=0 (2)y’+xy=1 (3)(x-1)y''-xy'+y=0 非線形微分方程式 (1)(y”)^2+y’-2x=0 (2)x(y”’)^3+y’=3 (3)y・y’+xy=1 上記、線形/非線形の分類に間違いはあるでしょうか? 非線形微分方程式の(3)y・y’+xy=1は、なぜ非線形となるのでしょうか? y・y’+xy=1⇒y’+x=1/y⇒y’+x-1/y=0は線形ではないでしょうか? 線形微分方程式(2)y’+xy=1も、xy’+xy=1となると非線形になるの でしょうか? ご回答よろしくお願い致します。

  • 線形微分方程式について

    微分方程式の分類に関して、 線形…y(x)及びその微分について一次までのもの。 と手元の資料には書いてるんですが、 これはy(x)もしくはdy(x)/dx のみを含んでいる、ということですか? 調べてみると、斉次2階微分方程式なるものもあるようで困っています。(斉次ということは線形ですよね?2次が含まれていていいんでしょうか?)

  • 偏微分方程式の解き方(補助微分方程式利用)

    P(x, y)∂z/∂x+Q(x, y)∂z/∂y=0を解く際に、 補助微分方程式として、 dx/P(x, y)=dy/Q(x, y)・・・(*) を考えますが、(*)の形を思いつく過程を教えて頂けると嬉しいです。 また、1階の斉次線形偏微分方程式は、すべて(*)の形の補助微分方程式利用で解けるのでしょうか? よろしくお願いします。

  • 1階線形微分方程式

    y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題なのですが1階線形になることは示せたのですが、その次の1階線形微分方程式の解法がよく分かりません。 教えてください。よろしくお願いします。 ↓ y'-2y/x=xy^3 y'/y^3-2/xy^2=x u=1/y^2とおく ∴u'=-2y'/y^3 これを上式に代入すると -u'/2-2u/x=x ⇔u'+4u/x=-2x

  • 線形でない2階微分方程式

    はじめまして。 線形でない2階微分方程式についての質問なのですが      y'’=f(x,y')      y'=f(y,y') これらの形の微分方程式を解くとき 微分方程式を見て、実際どちらの形かわからないものがあります・・・。 たとえば、 y''=yy' の場合であれば、後者のほうの形ですが      y''=y^2 の場合であると、前者と、後者どちらでも可能なきがするのですが どうなのでしょうか?? 意味不明な質問かもしれないですがよろしくお願いしますm(__)m

  • 線形一階方程式

    数学の課題で、 置換 z=y^(1-n)により、ベルヌーイの方程式        y′+P(x)y=Q(x)y^n はzについての線形一階方程式に変えられることを示せ。 という問題が出たのですが、解き方が分かりません。回答をよろしくお願いします。

  • 非線形微分方程式の問題です

    非線形微分方程式について質問です。 とある大学院試験の数学の問題で次のような問題がありました。 y = dy/dx (x) + 4(dy/dx)^2 この微分方程式は (dy/dx)^2 の項があり、非線形微分方式です。 非線形微分方程式は解を求めるのが大変難しいだけでなく、解が求められないものもたくさん存在します。 私はこの問を解けませんでした。 解くことは可能なのでしょうか。 お願いします。

  • 非線形微分方程式の問題について

    微分方程式の問題について質問させていただきます。 [問題] 以下の微分方程式を解け。 dy/dx(dy/dx-y)=x(x-y) ただし、x=0のときy=0とする。 非線形なのでp=dy/dxとおいて、解いたのですが、解として (1) y = 1 + x - e^-x (2) y = (1/2)x^2 の二つが出てきました。しかし、(1)の方は微分して与式に代入しても、 式を満たさなかったのでですが、これらの解は合っているでしょうか? おそらく、(1)は間違っていると思うのですが、p=dy/dxとおいて解くと、なぜかこのような解が出てきてしまいました。 回答よろしくお願いいたします。