- ベストアンサー
不定積分です。よろしくお願いします。
(sinx)^4dx の積分で、答えは 3/8x-3/16sin2x-1/4cosx(sinx)^3+cです。 これは参考書の問題なんですが、解説が全くありません・・・。部分積分法の問題ですがどなたか是非この問題わかりやすく教えて下さい。 数学は得意ではないので、くわしく書いていただけるとすごく助かります。よろしくお願いします。
- みんなの回答 (4)
- 専門家の回答
その他の回答 (3)
- postro
- ベストアンサー率43% (156/357)
- maiuumaiuu
- ベストアンサー率22% (2/9)
- postro
- ベストアンサー率43% (156/357)
関連するQ&A
- 不定積分 部分積分
∫(3x+2)sinx dx =∫{(sinx)×(3x+2)} dx =(-cosx)×(3x+2)-∫{(-cosx)×3}dx =-(3x+2)cosx-3∫-cosx dx =-(3x+2)cosx+3∫cosx dx =-(3x+2)cosx+3sinx or =(3x+2)(-cosx)-∫(3x+2)'(-cosx)dx =-(3x+2)cosx+3∫cosx dx =-(3x+2)cosx+3sinx この2つのやり方どちらで部分積分で解答した方がいいんですか? また、他の部分積分の時にはどちらのやりかたでやったほうがいいですか?
- ベストアンサー
- 数学・算数
- 【定積分】全9問解き方教えて下さい※1問のみでも可
定積分の問題が解き方がわかりません。 教科書には答えだけがのっており、 数学が苦手な私は全然解き方が思いつきません。 【∫↑ ~ ∫↓】…定積分の範囲 (1) 【2π~0】 ∫cos^2x sin^2x dx 答え π/4 (2)【π/2~0】 ∫sin^4x dx 答え 3π/16 (3)【π~0】 ∫x^2 sin^2 dx 答え π(2π^2 -3)/12 (4)【π~0】 ∫√(1+cosx) dx 答え 2√2 (5)【2~0】 ∫x^2√(2x-x^2) dx 答え 5π/8 (6)【π/2~0】 ∫1/(4+5sinx) dx 答え log2/3 (7)【π/4~0】 ∫1/(1+2sin^2x) dx 答え π/3√3 (8)【2~1】 ∫1/√(x^2 -1) dx 答え log(2+√3) (9)【2~0】 ∫1/√(x(2-x)) dx 答え π 答えは解くときの参考にしてもらえたらと思います。 全部は解けないけど何問かはわかる、という方も 解答をお願いします。 初めての質問で至らない点もあるかと思いますが よろしくお願いします。
- ベストアンサー
- 数学・算数
- いろいろな積分
(1)∫cosx^3/(sinx^(1/2)dx (2)∫x^2(2ax-x^2)^(1/2)dx (3)∫(logx)^4/xdx (4)∫(arcsinx)^4dx (5)∫1/(a^2sinx+b^2cosx)dx (6)∫(1-x^2)^ndx これらの問題を解く上で、解説をして欲しいです。(1)については、すべてsinにすればいいのでしょうか?糸口が見えません。(2)は部分積分がいいでしょうか。(2ax-x^2)^(1/2) これを積分?(3)(logx)^5を微分すると形が見えてきますね。(6) は部分積分のにおいがしますが、どうしたらいいのやらと。それで分かるのだけでも協力いただけたら幸いです。結局(3)以外ほとんど駄目なのです。
- ベストアンサー
- 数学・算数
- 不定積分
∫cos^2x/(1+sinx) dx という問題があるのですが模範解答は分子を1-sin^2と変形して 約分をし簡単な形に持っていく形式を取っています。私もこれは理解できます。 答え、x+cosx+C 私は違うやり方でやってみたのですが答えが合わずしかも納得がいかないという 悪循環になってしまいました。 下に私のやった方法を書くので間違いを指摘していただければと思います。 ∫cos^2x/(1+sinx) dx sinx=tとおくと cosxdx=dtだから与式は ∫cosx/(1+sinx) dt =∫t'/(1+t) dt =∫(t+1)'/(1+t) dt =log|t+1|+C =log(sin+1)+C お願いいたします
- ベストアンサー
- 数学・算数
補足
わざわざ、くわしく答えていただき本当にありがとうございます。 I(4)=-3/4I(2)-1/4cosx(sinx)^3 と I(2)=1/2x-1/4sin2x+C がどうして、こうなるのかその計算過程がわかりませんでした・・・どうか、おしえていただけないでしょうか?お願いします。