• ベストアンサー

積分

微分方程式を解く過程で  C(x) = ∫(sinx)(cosx)*e^(sinx)dx を解くことになったのですが、これは解けるのでしょうか?  ∫(cosx)e^(sinx)dx なら =e^(sinx) と解けるのですが。 ちなみにそもそもの問題は   y' + (cosx)y = (sinx )(cosx) で、定数変化法を使って解き、まず右辺=0の解が   y = Ce^(-sinx) :Cは積分定数 と求まったので、C=C(x)として最初の式に代入して今回質問した積分がでてきました。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • Ae610
  • ベストアンサー率25% (385/1500)
回答No.1

f(x)=sinx g'(x)=(cosx)e^(sinx) ('はxの微分を表す) と見て、部分積分を考える。

chiropy
質問者

お礼

(cosx)e^(sinx)なら積分できると言っておきながら部分積分を忘れてました。 f(x)g(x)h(x)としか見れてなかったのですが、(cosx)e^(sinx)を一塊と見ればいいのですね ありがとうございます。

その他の回答 (1)

  • Knotopolog
  • ベストアンサー率50% (564/1107)
回答No.2

 C(x) =∫(sinx)(cosx)*e^(sinx)dx を部分積分法で積分すれば,  C(x)={(sinx)-1}*e^(sinx) が得られます.

chiropy
質問者

お礼

ありがとうございます。 おかげさまで解くことができました。

関連するQ&A

  • 1階の線形微分方程式

    1階の線形微分方程式 次の微分方程式の解き方が分かりません。いちおう、自分でもやりましたが、答えを先生が教えてくれないので困っています。さらに(3)はさっぱりです。 (1)y'+2y=6e^x (2)y'+y=sinx (3)xy'-2y=x^3e^x (1),(2)の自分なりで解いてみた答え (1) λ+2=0 λ= -2 よってこの微分方程式の一般解は y1=Ce^-2x ここで、yp=k1*e^x とおいて、ypを微分方程式内に代入をすると、 yp'+2yp=k1*e^x+2k1*e^x=3k1*e^x=6e^x k1=2 y2=2e^x よって y=y1+y2=C*e^-2x+2e^x (2) λ+1=0 λ= -1 よって、求める一般解は y1=Ce^-x ここで、特殊解を考えると yp=L*sinx+M*cosx yp'=L*cosx-M*sinx これを微分方程式に代入して yp'+yp=(L*sinx+M*cosx)+(L*cosx-M*sinx)=(L-M)sinx+(L+M)cosx ここで、 L-M=1 L+M=0 これを解いて L=1/2,M=-1/2 y2=1/2*sinx-1/2*cosx よって、y=y1+y2=Ce^-x+1/2*sinx-1/2*cosx

  • 微分積分について

    微分積分初心者です。 dy/dx=5という微分方程式があって、これの両辺をxで積分すると ∫dy/dx・dx=∫5dx y=5x + C(Cは積分定数)というのはわかるのですが、 dxを右辺に持って行って、 dy=5dxとして両辺を積分する時は、左辺をyで積分、右辺をxで 積分ということになるのでしょうか? こういうことは可能なのでしょうか? また一階微分の時は右辺にdxを持っていくことができますが、 二階微分以上ではできないのはなぜでしょうか? よろしくお願い致します。

  • 2階線形微分方程式

    質問なんですが。 微分方程式で y''-2y'+y=(e^x)cosx という問題があるんですが この特殊解を求めるときに y=a(e^x){cosx+(i)sinx} とおいて、これを微分方程式に代入すれば 特殊解がy=-(e^x)cosx となるとなっているのですが。 y=a(e^x){cosx+(i)sinx} とおくというのがよく分かりません。 なんでiがでてくるのかとかも…。 僕は最初 y=a(e^x)cosx+b(e^x)sinxとおいて計算していました。 質問がわかりにくかったらすいません。

  • ∫{(1/cosx)^4}dxの計算

    y' - ytanx = (y^4)secx という微分方程式を解いています。 まずz = y^(-3)とおくと dz/dx = {-3y^(-4)}y' ここで『y' - ytanx = (y^4)secx』の両辺に{-3y^(-4)}をかけて {-3y^(-4)}y' + (3tanx)y^(-3) = -3secx z = y^(-3)、dz/dx = {-3y^(-4)}y'なので上式は dz/dx + (tanx)z = -3secx ――――(*) となります。 dz/dx + (tanx)z = 0の微分方程式の解は z = C(cosx)^3 (Cは積分定数)なので、(*)式のzの解を z = C(x)(cosx)^3とおいて(*)の式に代入すると C'(x) = 1/(cosx)^4 となります。 最後にC'(x)をxで積分してzを求め、yを求めたいのですが、 ∫{(1/cosx)^4}dxが解けなくてこれ以上進めません。 この積分はどう解くのでしょうか?

  • 微分方程式と積分

    1.次の微分方程式を解け。 (1)y''+2y'+y=3sin2x 同次微分方程式の一般解はu(x)=(C₁+C₂x)exp(-x) と求められるのですが、非同次微分方程式の特殊解u₀(x)が求められません。 どうやって求めればいいのでしょうか。 (2)y''-5y'+6y=x(exp(x)) 非同次微分方程式の特殊解u₀(x)はどうやって求めたらいいのでしょうか。 2.置換積分によって、次の定積分を求めよ。 1.∫[0→π/2] 1/(1+cosx)dx tanx/2=tと置いた後、どうすればいいのでしょうか。 2.∫[0→a] x^2(√a^2-x^2)dx(a>0) x=asintとおくと、dx=acost dt .∫[0→a] x^2(√a^2-x^2)dx=∫[0→π/2] a^2sin^2t*acos^2t dt このあとどうすればいいのでしょうか。 お願いします。

  • 1階線形微分方程式の問題です。

    自分の持ってる参考書(サイエンス社の基本微分積分)の dy/dx+ycosx=sinxcosx を解けという問題についてです。 解説で y = exp(-∫cosx dx){∫sinxcosx exp(∫cosx dx)dx+C} = exp(-sinx){∫sinxcosx exp(sinx)dx+C} と書かれているところがあります。上の式になるのは一般解の式に代入する形でそのようになるのはわかるのですが、そのあと下の式にどうしてなるのかがわかりません。 自分的には 下の式=exp(-sinx + C1){∫sinxcosx exp(sinx + C2)dx+C} というようにC1やC2といった積分定数が出てくるのではないかと思うのですが、どうして参考書には積分定数がないのでしょうか? ちなみに、この問題の答えは y = sinx - 1 + Cexp(-sinx) (Cは積分定数) となっています。

  • 再び微分方程式の質問(2)です。

    全くわからず手が付けられません。ご回答よろしくお願いいたします。 微分方程式 y’+2y(2乗)-2y=0 について問1~問3について答えよ。  問1 問題の微分方程式は変数分離型である。変数を分離した積分として、次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。  (1) ∫1/y(y-1)dy=∫2dx  (2) ∫1/y(1-y)dy=∫2dx  (3) ∫1/y(y+1)dy=∫2dx  (4) ∫1/y(y-1)dy=∫1/2dx  (5) (1)~(4)に正解はない。  問2 問題の微分方程式の解として、次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。  (1) 一般解y=1±√1-Ce(2x乗)/2 (Cは任意定数)  (2) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数)  (3) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数)と特異解y=1  (4) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数)と特異解y=0  (5) (1)~(4)に正解はない。  問3 問題の微分方程式の解y=y(x)で、y(0)=1/2をみたすものがy(x)=2/3となるxとして次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。  (1) 1/2log2  (2) 3/2  (3) log6  (4) 1/6  (5) (1)~(4)に正解はない。  以上、よろしくお願いいたします。

  • 微分方程式

    第1問 dy   y~2-x~2 --=--------- (ヒントz=y/xと置換しなさい) dx    2xy 第2問 一階線形微分方程式  dy --+ycosx=sinx×cosx---(1)がある dx 1、この方程式の同次の微分方程式を解きなさい 2、定数変化法により、この微分方程式(1)の特解を求めなさい。 また、その時の一般解を求めなさい

  • 1階非同次微分方程式の一般解について

    1階非同次微分方程式の一般解の解釈について不明点がございます。 一般化した1階非同次微分方程式:y' + p(x)y = q(x)の一般解は y = e^(-∫p(x)dx) * ∫q(x)e^(∫p(x)dx)dx + ce^(-∫p(x)dx) で表されるのは理解できるのですが、この一般解が非同次微分方程式の特殊解と同次微分方程式の一般解の和になっていることが理解できません。 つまり右辺の1項目、e^(-∫p(x)dx) * ∫q(x)e^(∫p(x)dx)dx が非同次方程式の特殊解になる理由がわかりません。 個人的に考えるに右辺の2項目のcが-∞~∞まで全ての値をとることが可能なので c=0の場合に、右辺の1項目は非同次方程式の特殊解になる、と勝手に推測しているのですがその考えでよろしいでしょうか? どなたかその辺詳しい方がいらっしゃいましたら是非ご教授お願い致します。

  • 指数関数×三角関数の積分

    (e^x)×(cosx)の部分積分を解く問題なのですが、 I=∫(e^x)×(cosx)dx =(e^x)(cosx)+∫(e^x)(sinx)dx =(e^x)(cosx)+(e^x)(sinx)-∫(e^x)(cosx)dx ∴I=1/2(e^x)(cosx+sinx)+C と、模範解答に書いてあったのですが、 (e^x)(cosx)+(e^x)(sinx)-∫(e^x)(cosx)dxが1/2(e^x)(cosx+sinx)+Cになる、という所がいまいちわかりません。 初歩的な質問で申し訳ないのですが、教えて頂けたら有り難いです。 あと、似た問題で(e^x)(sinx)の積分を解く問題もあったのですが同じように1/2(e^x)(-cosx+sinx)+Cという形になったりするのでしょうか。