- ベストアンサー
- 暇なときにでも
積分
微分方程式を解く過程で C(x) = ∫(sinx)(cosx)*e^(sinx)dx を解くことになったのですが、これは解けるのでしょうか? ∫(cosx)e^(sinx)dx なら =e^(sinx) と解けるのですが。 ちなみにそもそもの問題は y' + (cosx)y = (sinx )(cosx) で、定数変化法を使って解き、まず右辺=0の解が y = Ce^(-sinx) :Cは積分定数 と求まったので、C=C(x)として最初の式に代入して今回質問した積分がでてきました。 よろしくお願いします。
- chiropy
- お礼率70% (461/653)
- 回答数2
- 閲覧数139
- ありがとう数2
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- Ae610
- ベストアンサー率25% (385/1500)
f(x)=sinx g'(x)=(cosx)e^(sinx) ('はxの微分を表す) と見て、部分積分を考える。
関連するQ&A
- ∫{(1/cosx)^4}dxの計算
y' - ytanx = (y^4)secx という微分方程式を解いています。 まずz = y^(-3)とおくと dz/dx = {-3y^(-4)}y' ここで『y' - ytanx = (y^4)secx』の両辺に{-3y^(-4)}をかけて {-3y^(-4)}y' + (3tanx)y^(-3) = -3secx z = y^(-3)、dz/dx = {-3y^(-4)}y'なので上式は dz/dx + (tanx)z = -3secx ――――(*) となります。 dz/dx + (tanx)z = 0の微分方程式の解は z = C(cosx)^3 (Cは積分定数)なので、(*)式のzの解を z = C(x)(cosx)^3とおいて(*)の式に代入すると C'(x) = 1/(cosx)^4 となります。 最後にC'(x)をxで積分してzを求め、yを求めたいのですが、 ∫{(1/cosx)^4}dxが解けなくてこれ以上進めません。 この積分はどう解くのでしょうか?
- ベストアンサー
- 数学・算数
その他の回答 (1)
- 回答No.2
- Knotopolog
- ベストアンサー率50% (564/1106)
C(x) =∫(sinx)(cosx)*e^(sinx)dx を部分積分法で積分すれば, C(x)={(sinx)-1}*e^(sinx) が得られます.
質問者からのお礼
ありがとうございます。 おかげさまで解くことができました。
関連するQ&A
- 不定積分の問題
不定積分の問題です。mを自然数とするとき、 n (1)∫(cosx)^(2m-1)dx=Σa(k)(sinx)^k+C k=1 (Cは積分定数) (a(k)のkは添え字です。) を満たす自然数nおよび実数a(k)(k=1,2,…,n)を求めよ。 (2)f(t)を多項式とするとき、 ∫f(cosx)dx-∫f(-cosx)dx=g(sinx)+C (Cは積分定数) を満たす多項式g(t)が存在することを示せ。 という問題です。 (1)はn=2m-1 a(k)=0(k=2.4.…n-1) (k=1,3,…n)のときは式が複雑なので記載するのは控えます。 分からないのは(2)で解答には n f(t)=Σb(k)t^k とおけるので、n=2L-1とおくと k=0 L f(t)-f(-t)=Σ2b(2m-1)t^(2m-1) m=1 となっているんですが、なぜ n=2L-1とおくのか、f(t)-f(-t)の右辺のΣのmが1→L なのかがわかりません。 宜しくお願いします。
- ベストアンサー
- 数学・算数
- 1階の線形微分方程式
1階の線形微分方程式 次の微分方程式の解き方が分かりません。いちおう、自分でもやりましたが、答えを先生が教えてくれないので困っています。さらに(3)はさっぱりです。 (1)y'+2y=6e^x (2)y'+y=sinx (3)xy'-2y=x^3e^x (1),(2)の自分なりで解いてみた答え (1) λ+2=0 λ= -2 よってこの微分方程式の一般解は y1=Ce^-2x ここで、yp=k1*e^x とおいて、ypを微分方程式内に代入をすると、 yp'+2yp=k1*e^x+2k1*e^x=3k1*e^x=6e^x k1=2 y2=2e^x よって y=y1+y2=C*e^-2x+2e^x (2) λ+1=0 λ= -1 よって、求める一般解は y1=Ce^-x ここで、特殊解を考えると yp=L*sinx+M*cosx yp'=L*cosx-M*sinx これを微分方程式に代入して yp'+yp=(L*sinx+M*cosx)+(L*cosx-M*sinx)=(L-M)sinx+(L+M)cosx ここで、 L-M=1 L+M=0 これを解いて L=1/2,M=-1/2 y2=1/2*sinx-1/2*cosx よって、y=y1+y2=Ce^-x+1/2*sinx-1/2*cosx
- ベストアンサー
- 数学・算数
- 1階線形微分方程式の問題です。
自分の持ってる参考書(サイエンス社の基本微分積分)の dy/dx+ycosx=sinxcosx を解けという問題についてです。 解説で y = exp(-∫cosx dx){∫sinxcosx exp(∫cosx dx)dx+C} = exp(-sinx){∫sinxcosx exp(sinx)dx+C} と書かれているところがあります。上の式になるのは一般解の式に代入する形でそのようになるのはわかるのですが、そのあと下の式にどうしてなるのかがわかりません。 自分的には 下の式=exp(-sinx + C1){∫sinxcosx exp(sinx + C2)dx+C} というようにC1やC2といった積分定数が出てくるのではないかと思うのですが、どうして参考書には積分定数がないのでしょうか? ちなみに、この問題の答えは y = sinx - 1 + Cexp(-sinx) (Cは積分定数) となっています。
- ベストアンサー
- 数学・算数
- 微分方程式と積分
1.次の微分方程式を解け。 (1)y''+2y'+y=3sin2x 同次微分方程式の一般解はu(x)=(C₁+C₂x)exp(-x) と求められるのですが、非同次微分方程式の特殊解u₀(x)が求められません。 どうやって求めればいいのでしょうか。 (2)y''-5y'+6y=x(exp(x)) 非同次微分方程式の特殊解u₀(x)はどうやって求めたらいいのでしょうか。 2.置換積分によって、次の定積分を求めよ。 1.∫[0→π/2] 1/(1+cosx)dx tanx/2=tと置いた後、どうすればいいのでしょうか。 2.∫[0→a] x^2(√a^2-x^2)dx(a>0) x=asintとおくと、dx=acost dt .∫[0→a] x^2(√a^2-x^2)dx=∫[0→π/2] a^2sin^2t*acos^2t dt このあとどうすればいいのでしょうか。 お願いします。
- ベストアンサー
- 数学・算数
- 微分方程式の解き方を教えてください
y''+y=1/cosx という微分方程式の同次方程式y''+y=0の一般解は y=Acosx+Bsinx (A,Bは任意定数) ですが、特殊解の解き方が分かりません。 もし(右辺)=cosxなら逆演算子を使ってすぐに解けるのですが、(右辺)=1/cosxとなると分かりません。ご存知の方、お手数ですが教えてください。よろしくお願いします。 ※ y''=d^2y/dx^2
- ベストアンサー
- 数学・算数
- e^-1/Tの積分
現在、次のような微分方程式を解かなければならず、 悪戦苦闘しています。 dx/dT=k/a*exp(-E/RT)*(1-x) この式のうち、k,a,E,Rは定数で既知なので、無視すると、 dx/dT = exp(-1/T)*(1-x) という微分方程式になります。 私はこの式をxとTの変数分離型の微分方程式と捉えて次のように変形しました。 dx/(1-x) = exp(-1/T)dT これの両辺を積分するのですが、左辺は ln{1/(1-x)} という答えになるのがわかるのですが、右辺の ∫exp(-1/T)dT という積分が解けません。 どなたか教えていただけませんでしょうか。 よろしくお願いいたします。
- ベストアンサー
- 数学・算数
- 今年最後の質問です(積分定数の扱いについて)
今年は回答者の皆様にたいへんお世話になりました。 ありがとう御座います。 先ほど微分方程式を2通りの解法で解いたところ、答えが積分定数の項だけ違うものになりました。 1つ目の解は 1/(1-xC) ※Cは積分定数です。 2つ目の解は 1/(1+xC)です。 積分定数の値によってその項の符号は変わるので、両方に大差は無い気がします。両方とも正解と考えて良いのでしょうか? お手数をお掛けいたしますが、よろしくお願いします。
- ベストアンサー
- 数学・算数
質問者からのお礼
(cosx)e^(sinx)なら積分できると言っておきながら部分積分を忘れてました。 f(x)g(x)h(x)としか見れてなかったのですが、(cosx)e^(sinx)を一塊と見ればいいのですね ありがとうございます。