• ベストアンサー

不定積分の問題

高校数学の不定積分の問題です。 1) ∫(tanx)^4dx 2) ∫{x/(1-cosx)}dx 1)に関しては (tanx)^4=(tanx)^2*(sinx/cosx)^2 =(tanx)^2*{1-(cosx)^2}/(cosx)^2 =(tanx/cosx)^2-(tanx)^2 =・・・ というような操作をするのかと思ったのですが・・・。2)は全く不明です。お願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • postro
  • ベストアンサー率43% (156/357)
回答No.2

1)に関して続きをかくと (tanx)^4=(tanx)^2*(sinx/cosx)^2 =(tanx)^2*{1-(cosx)^2}/(cosx)^2 =(tanx/cosx)^2-(tanx)^2 =(tanx)^2(tanx)'-((1-cosx^2)/(cosx)^2 =(tanx)^2(tanx)'- 1/(cosx)^2 +1 となるから 1) ∫(tanx)^4dx={(tanx)^3}/3 - tanx + x +C 2)は x/(1-cosx)=x/2{sin(x/2)}^2=x(-1/tan(x/2))' より部分積分を使って 2) ∫{x/(1-cosx)}dx=-x/tan(x/2) + 2log|sin(x/2)| +C 再確認してください

bilateraria165
質問者

お礼

詳しい解説ありがとうございます。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

回答No.1

難しく考えすぎていませんか?? (1)も(2)も普通に解けばいいのですよ?? (1)は、P=tanxとでも置いて解いてみてください。 (2)は、部分積分で解けますよ。

bilateraria165
質問者

補足

結構頑張ってみたのですがわかりませんでした。回答ありがとうございます。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 不定積分です。よろしくお願いします。

    (sinx)^4dx の積分で、答えは 3/8x-3/16sin2x-1/4cosx(sinx)^3+cです。 これは参考書の問題なんですが、解説が全くありません・・・。部分積分法の問題ですがどなたか是非この問題わかりやすく教えて下さい。 数学は得意ではないので、くわしく書いていただけるとすごく助かります。よろしくお願いします。

  • 不定積分 部分積分

    ∫(3x+2)sinx dx =∫{(sinx)×(3x+2)} dx =(-cosx)×(3x+2)-∫{(-cosx)×3}dx =-(3x+2)cosx-3∫-cosx dx =-(3x+2)cosx+3∫cosx dx =-(3x+2)cosx+3sinx or =(3x+2)(-cosx)-∫(3x+2)'(-cosx)dx =-(3x+2)cosx+3∫cosx dx =-(3x+2)cosx+3sinx この2つのやり方どちらで部分積分で解答した方がいいんですか? また、他の部分積分の時にはどちらのやりかたでやったほうがいいですか?

  • 積分の問題です

    途中で間違えていたため訂正しました; 積分の計算の質問です。 (1)∫(-π/2~π/2)(tanx)^2dx これは広義積分を0までと0からに分けて定義して、 その後(tanx)^2の不定積分を求めるためにt=tanxとおいて計算すると tanx-xが求まり、それを広義積分に当てはめると lim(ε→0)(-π/2+ε+1/tanx)+lim(η→0)(-π/2+η+1/tanx) となったんですが、これは答えが正の無限大となると考えればよいのでしょうか? (2)∫(0→π)(1/1+2cosx)dx これはxが2π/3のとき分母が0になってしまうので、そこを境に広義積分を定義して 次にt=tanx/2とおいて1/1+2coxの不定積分を求めると 1/3*log|(√3+tanx/2)/(√3-tanx/2)|が求まり、 それを広義積分に当てはめるとx=πのところで値がlog|∞/∞| のようになってしまうように思うんですが、 これは途中で間違っているのでしょうか?それとも何か考え方が違うのでしょうか? (3)∫(0~π/2)(π/2-x)tanxdx これは解き方の方針が思いつきません。 どれか1つでもいいので、 回答いただけるとうれしいです><

  • 不定積分です

    ∫1/(1+tanx)dx をtanx=tとおいて解くらしいのですが、うまくいきません。 答えは1/5*log|{2(1-cosx)+sinx}/(1-cosx-2sinx)|+C  です(わかりにくくてすいません)。たびたび申し訳ありませんがお願いします。

  • 大学数学の積分の問題 ∫[0→π/4]log(tanx+1)dx

    問題集の問題ですが、下の問題がわからなかったので、どなたかわかる方教えてください。 ∫[0→π/4]log(1+tanx)dx 答えは(π/8)*log2になるようです。 学校が春休みで先生に聞くことも出来ません。 それと∫log(cosx)dxや∫log(sinx)dxをとくコツのようなものがあれば教えてほしいです。不定積分では解けないという 話を聞いたことがあるのですが、たとえば0<x<π/4のときはどうすれいいのでしょうか。

  • 不定積分

    ∫(x/sin^2x)dx 【参考書の解説】 与式 =-(x/tanx)+∫(1/tanx)dx =-(x/tanx)+log|sinx|+C 【疑問点】 部分積分をしていることはわかるのですが、どこからtanxがでてきたのですか? 詳しい解説お願いします。

  • 積分の問題

    数学3の積分の問題を解いています 置換積分を使って解く問題なのですが、解き方がイマイチわかりません。回答を見てもなぜそうなのかがわからず苦戦しています。 問題 次の不定積分を求めよ ∫(tanx+1/tanx)dx

  • 三角関数の積分

    どこが間違っているのでしょうか.部分積分を利用して解こうとしました。 ∫tanx dx =∫sinx/cosx dx = (-cosx)/cosx -∫(-cosx)・{(cosx)-1}’dx = -1-∫(-cosx)(-1)・(cosx)-2・(-sinx)dx       = -1+∫sinx/cosx dx  となり 0=-1で矛盾します。 tanx = -(cosx)’/cosxとみて 答えは -log|cosx|となることはわかるのですが。上記の部分積分の間違っている点を教えてください。

  • 不定積分の問題です

    (sinx)^2/{4(cosx)^2-1} の不定積分を求めて下さい。お願いします

  • 不定積分の問題です

    ∫1/(x^6-1)dx ∫2x^2-3x-9/(x+1)(x^2+4x+5)dx ∫1/(1+2cosx)dx ∫sinx/(1+sinx+cosx)dx がわかりません

VKL41/X-Bの機能について
このQ&Aのポイント
  • VKL41/X-Bはノートパソコンで、接続方法はUSBtypeCです。
  • お困りごとは、VKL41/X-BがDisplayPort Alt Modeに対応しているかどうかです。
  • NEC 121wareの「パソコン本体」についての質問です。
回答を見る

専門家に質問してみよう