- 締切済み
不定積分の問題です
∫1/(x^6-1)dx ∫2x^2-3x-9/(x+1)(x^2+4x+5)dx ∫1/(1+2cosx)dx ∫sinx/(1+sinx+cosx)dx がわかりません
- みんなの回答 (3)
- 専門家の回答
みんなの回答
- alice_44
- ベストアンサー率44% (2109/4759)
- alice_44
- ベストアンサー率44% (2109/4759)
- アウストラロ ピテクス(@ngkdddjkk)
- ベストアンサー率21% (283/1290)
関連するQ&A
- 不定積分 部分積分
∫(3x+2)sinx dx =∫{(sinx)×(3x+2)} dx =(-cosx)×(3x+2)-∫{(-cosx)×3}dx =-(3x+2)cosx-3∫-cosx dx =-(3x+2)cosx+3∫cosx dx =-(3x+2)cosx+3sinx or =(3x+2)(-cosx)-∫(3x+2)'(-cosx)dx =-(3x+2)cosx+3∫cosx dx =-(3x+2)cosx+3sinx この2つのやり方どちらで部分積分で解答した方がいいんですか? また、他の部分積分の時にはどちらのやりかたでやったほうがいいですか?
- ベストアンサー
- 数学・算数
- 積分問題
A=∫[0→π/2](sin^3x)/(sinx+cosx)dx B=∫[0→π/2](cos^3x)/(sinx+cosx)dx (1)A+Bを計算せよ。 (2)AとBが等しいことを示せ。 (3)Aの値を求めよ。 (1)A+B=∫[0→π/2]{(sin^3x)+(cos^3x)}/(sinx+cosx)dx =∫[0→π/2](1+sinx+cosx)/(sinx+cosx)dx =∫[0→π/2][{1/(sinx+cosx)}+1]dx =∫[0→π/2][{1/√2sin(x+π/4)}+1]dx =[0→π/2][1/{√2log tan(x/2-π/8)}+1]dx =1/{√2log tan(π/8)} + π/2 - 1/{√2log tan(-π/8)} =(2/√2)log tan(π/8) + π/2 になったのですがこのような方法でよろしいのでしょうか? (2)に関しては、どのようにして行ってよいのかわかりません。 (3)もどうようにわかりません。 教えて頂けないでしょうか? よろしくお願い致します。
- ベストアンサー
- 数学・算数
- 不定積分
∫cos^2x/(1+sinx) dx という問題があるのですが模範解答は分子を1-sin^2と変形して 約分をし簡単な形に持っていく形式を取っています。私もこれは理解できます。 答え、x+cosx+C 私は違うやり方でやってみたのですが答えが合わずしかも納得がいかないという 悪循環になってしまいました。 下に私のやった方法を書くので間違いを指摘していただければと思います。 ∫cos^2x/(1+sinx) dx sinx=tとおくと cosxdx=dtだから与式は ∫cosx/(1+sinx) dt =∫t'/(1+t) dt =∫(t+1)'/(1+t) dt =log|t+1|+C =log(sin+1)+C お願いいたします
- ベストアンサー
- 数学・算数
- 不定積分です。よろしくお願いします。
(sinx)^4dx の積分で、答えは 3/8x-3/16sin2x-1/4cosx(sinx)^3+cです。 これは参考書の問題なんですが、解説が全くありません・・・。部分積分法の問題ですがどなたか是非この問題わかりやすく教えて下さい。 数学は得意ではないので、くわしく書いていただけるとすごく助かります。よろしくお願いします。
- ベストアンサー
- 数学・算数
- 部分積分?の問題を教えて下さい
この積分の問題を教えて下さい。 (-πからπ)∫{(e^x)sinx}dx (-πからπ)∫{(e^x)cosx}dx を解けという問題です。 普通に部分積分したら (-πからπ)∫{(e^x)sinx}dx=(-πからπ)∫{(e^x)cosx}dx みたいになって上手くいきません・・。 何か別の方法があるのでしょうか? お願いいたします。
- ベストアンサー
- 数学・算数
- この積分の問題教えてください
この問題の答えが無いので教えてください。 自分なりに解いたのですが、合ってるでしょうか? ∫[0,π/2] 1 / sinx+cosx dx tan(x/2)=t とおくと、 dx=2/(1+t^2) dt cosx=(1-t^2)/(1+t^2) sinx=2t/(1+t^2) となる。 置換した後の積分範囲は、 x|0→π/2 t|0→ 1 ∫[0,π/2] 1 / sinx+cosx dx = -2∫[0,1] 1 / t^2-2t-1 dx 分母を平方完成して = -2∫[0,1] 1 / (t-1)^2-2 dx 公式:∫[1 / x^2-a^2] = 1/2a log|x-a/x+a|なので =1/√2 log|(-√2-1) / (√2-1)| logの中が汚いかんじで合ってるか不安です。 教えてください。
- ベストアンサー
- 数学・算数
補足
∫(2x^2-3x-9)/((x+1)(x^2+4x+5))dxです ∫1/(1+2cosx)dxは解くことができたのですがほかがさっぱりです 一番上の問題は実部分数分解では解くことができたのですが複素部分分数分解でのやり方がわかりません ご教授お願いします