- ベストアンサー
微分方程式の解き方
dx/dt = x - (x + y)(x^2+y^2)^(1/2) dy/dt = y - (x - y)(x^2+y^2)^(1/2) という微分方程式があります。 この方程式の解を厳密に求めることはできないようですが、 (x^2+y^2)^(1/2) = r x = r cosθ y = r sinθ と置くことにより、上記の微分方程式の答えが、 dθ/dt = r dr/dt = r(1-r) を満たすことが分かるそうです。 ところで、上の微分方程式からどうやってこれを導くのでしょうか?勘でしょうか?
- みんなの回答 (1)
- 専門家の回答
お礼
あっ、ありがとうございます。 私のミスまで、、、そのとおりです。