• ベストアンサー

3次のルジャンドル多項式

3次のルジャンドル多項式P3(t)を解けという問題が出ているのですが、具体的にどの式を解いたら良いのでしょうか。 教科書には P3(t) = (5 t^3 - 3t) /2 と書いてあるのですが、ここから何を何について解けば良いのか全くわかりません。 どなたかご教示願えませんでしょうか。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • f272
  • ベストアンサー率46% (8047/17200)
回答No.1

3次のルジャンドル多項式はP3(t)=(5 t^3 - 3t) /2ですけれど,確かにそれだけでは何をしたらよいのかわかりませんね。

mist55
質問者

お礼

P3(t) = (5 t^3 - 3t) /2 この式を書けってことなんですかね・・ ありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • ルジャンドルの多項式の導き方

    複素関数を独学中です。 ルジャンドルの多項式 P_n(z) について。 P_n(z)=Σ{k;0→[n/2]}{(-1)^k(1/2)_(n-k)(2z)^(n-2k)}/{k!(n-2k)!} …(1) =(1/2^n)Σ{k;0→[n/2]}{(-1)^k(2n-2k)!z^(n-2k)}/{k!(n-k)!(n-2k)!} …(2) なお、式中で、[n/2]はn/2を越えない最大の整数です。また、(1/2)_(n-k)については、無限乗積 (z)_n=z(z+1)(z+2)…(z+n-1)=Π[k;1→n](z+k-1) (但し(n≧1), (z)_0=1です。)に準じて考える訳ですが、(1/2)_(n-k)=(1/2)(3/2)(5/2)…{(1/2)+n-k-1}=Π[k;1→n]{(1/2)+n-k-1} で良いのどうか?という点が第1の疑問点です。 第2の疑問点は、(1)から(2)への過程が理解できない事です。(2)式の、1/2^nや(2n-2k)!/(n-k)!をどのように導出するのか出来るだけ詳しく教えて頂けたら幸いです。

  • ルジャンドル多項式の漸化式の導出

    ルジャンドル多項式P_n(x)が満たす漸化式 (n+1)P_n+1(x) - (2n+1)xP_n(x) + nP_n-1(x) = 0 の導出について質問させてください。 母関数の展開式を微分して係数比較という方法での導出はよく見かけるのですが、 『理論電磁気学』(砂川重信、紀伊國屋書店)の付録p.457に別の導出方法が載っていました。(画像参照) 画像の(B・27)はロドリゲスの公式P_n(x)=(2^n・n!)^(-1)・(d^n/dx^n)(x^2-1)^nのことで、 確かにこれを代入すると(B・34)は正しいとわかるのですが、 (B・34)と(B・28)=ルジャンドルの微分方程式d/dx{(1-x^2)d/dxP_n(x)}+n(n+1)P_n(x)=0 から(B・35)一行目=最初に書いた漸化式が証明される。という点が分かりません。 (B・34)と(B・28)から(B・35)一行目を導く途中式をどなたか教えて頂けますでしょうか?よろしくお願いします。

  • 直交多項式(ルジャンドル、エルミート、ラゲール)

    題意の3つの直交関数の直交性の証明が詳しく載っている本をどなたかご存知でしたらぜひご紹介ください。もしくは回答欄で示していただけると幸いです。 できれば微積分を駆使した証明があると嬉しいです。 一応以下に載せておきます。 ルジャンドル多項式; P_n(x)={1/(n! 2~n)}(d/dx)~n (x~2-1)~2 エルミート多項式; H_n(x)=(-1)~n exp(x~2/2) (d/dx)~2 exp(-x~2/2) ラゲール多項式L_n(x)=exp(x) (d/dx)~n {x~n exp(-x)}

  • ルジャンドル微分方程式を解いています。。。。

    ルジャンドル微分方程式を超幾何方程式を用いて解いたのですが 自分の予想では、その後 「ルジャンドル多項式」や「超幾何関数」から 「ロドリクの公式」や「ルジャンドル微分方程式の母関数」が 導かれるものと思っていました。 しかし色々調べてみても、そこのつながりが無く 唐突に、あるいはセクションを設けて ロドリク公式や母関数での解法に移ります。 超幾何方程式からの解法は 定数「L」やルジャンドル多項式を求めるだけの解法 なのでしょうか?

  • 熱力学(ルジャンドル変換)について

    エントロピーを(1/T,V,n)、(1/T,V,n)にルジャンドル変換すると (∂E/∂β)βμ,V=-(∂E/∂n)β,V(∂n/∂βμ)β,V(∂βμ/∂β)n,V+(∂E/∂β)n,V β=1/T という式が導けるはずなのですが、導き方がわかりません。 エントロピーを上記の通りにルジャンドル変換すると dS=-Ed(β)+pβdV-βμdn dS=-Ed(β)+pβdV+nd(βμ) になるのですが私にはだからどうした?という感じでこれからどうしたらいいのか全く分かりません。 ちなみにマクスウェルの関係式を使って導こうとしたのですがうまくいきませんでした。 導き方の方向性だけでも、何か思いついた方がいらっしゃいましたらアドバイスお願いします。

  • 数値積分の問題(ガウス・ルジャンドルの公式)

    質問させていただきます 次の積分の数値積分を考える I=∫[1→3] x/(x^2+1)dx 積分値の近似値をガウス・ルジャンドルの2点公式を用いてあらわせ ただし2次のルジャンドル多項式の零点を t0, t1=-t0 として t0を用いてあらわせ どんな風にとけばいいのかさっぱり分かりません あと数値解析の参考書でお勧めの一冊があれば教えていただけませんか? 今使ってる参考書難しいので・・・

  • 潮汐力による変形をルジャンドル関数で表すには

    こんにちは、 下記の式ηは、地球と月の重力による球形の海面からずれる高さを 求める式です。 η=3/2*M/E*(e/R)^3*e*(cos^2λ-1/3) E:地球の質量 M:月の質量 e:地球の半径 R:地球-月の距離 λ:地球の中心から月と地球表面のある点―高さηを求める点―を見る角度 を示しております。 具体的に計算してみますと e/R=1/60.3 M/E=1/81.3 地球の半径をe=6370kmとしますと、 λ=0、180度のとき 0.357353m で一番膨らみ、 λ=90、270度のとき -0.178676m で一番へこみます。 これは、現実的な満潮、干潮時の数値とほぼ一致するようです。 ここで、質問ですが、 球体の中心から表面までの距離Rは、対称軸から測った角度θの関数と して、ルジャンドルの多項式Pλ(θ)によって展開でき、更に、中心 に関して変形が反転対称であるとすれば R(θ)=R0(1+α0+α2P2(θ)+α4P4(θ)+α6P6(θ)+、、、) と表せますが、上記の潮汐力による地球(球体)の変形もルジャンドル関数で 表せるのでしょうか?

  • ルジャンドルの母関数

    ルジャンドルの母関数(1-2xt+t^2)^(-1/2) = ΣPn(x) t^n )の公式を証明したいのですが分りません。具体的にどんな方法があるのか知っている方がおられましたら教えて下さい.

  • ルジャンドル関数 g(t,x)≡1/√(1-2tx

    ルジャンドル関数 g(t,x)≡1/√(1-2tx+t^2)=Σ(n=0→∞) Pn(x)t^nにおいて次の微分方程式 (1-x^2)∂g/∂x - (xt-1)∂g/∂t - xg =0 を用いて 次の漸化式 [(1-x^2)d/dx - (n+1)x]Pn(x) = -(n+1)Pn+1(x) を証明する方法を教えて下さい! (Pn(x)はルジャンドル多項式です) 大学の授業で取り扱ったのですがその日は交通遅延で授業に出られず、周りにノートを見せてくれる知り合いもいません。 どうかよろしくお願い致します!

  • 原始多項式の証明

    原始多項式の証明 すみませんこの問題がどうしてもわかりません。だれか教えていただけないでしょうか? x^4+x+1(この式はFp[x]に含まれる、p=2)はFp上の4次原始多項式であることを示せ。 まず、既約多項式であることを証明して、原始多項式であることを証明するのだと思うのですが・・・ どうかお願いします。