• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:ルジャンドルの多項式の導き方)

ルジャンドルの多項式の導き方

このQ&Aのポイント
  • 複素関数を独学中です。ルジャンドルの多項式 P_n(z) について。
  • P_n(z)=Σ{k;0→[n/2]}{(-1)^k(1/2)_(n-k)(2z)^(n-2k)}/{k!(n-2k)!} …(1)=(1/2^n)Σ{k;0→[n/2]}{(-1)^k(2n-2k)!z^(n-2k)}/{k!(n-k)!(n-2k)!} …(2)なお、式中で、[n/2]はn/2を越えない最大の整数です。
  • また、(1/2)_(n-k)については、無限乗積(z)_n=z(z+1)(z+2)…(z+n-1)=Π[k;1→n](z+k-1)(但し(n≧1), (z)_0=1です。)に準じて考える訳ですが、(1/2)_(n-k)=(1/2)(3/2)(5/2)…{(1/2)+n-k-1}=Π[k;1→n]{(1/2)+n-k-1}で良いのどうか?という点が第1の疑問点です。

質問者が選んだベストアンサー

  • ベストアンサー
  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.1

>(1/2)_(n-k)=(1/2)(3/2)(5/2)…{(1/2)+n-k-1}=Π[k;1→n]{(1/2)+n-k-1} で良いのどうか? 良くないです。 >(z)_n=z(z+1)(z+2)…(z+n-1)=Π[k;1→n](z+k-1) のnにn-kを代入するわけなので、 (1/2)_(n-k)=(1/2)(1/2+1)(1/2+2)…(1/2+n-k-1)=Π[j;1→n-k](z+j-1) となります。(同じ文字kを使うのはややこしいので、文字jについての積としました) >(2)式の、1/2^nや(2n-2k)!/(n-k)!をどのように導出するのか出来るだけ詳しく教えて頂けたら幸いです。 (1/2)_m =(1/2)(1/2+1)(1/2+2)…(1/2+m-1) =1*3*・・・*(2m-1)/2^m (←各項を2倍し、2倍した分(=2^m)で割った) =((1*2*・・・*2m)/(2*4*・・・*2m))/2^m  =((1*2*・・・*2m)/((1*2*・・・*m)*2^m))/2^m (←各項を2で割り、割った分(=2^m)をかけた) =(2m)!/(m!*2^(2m)) のmにn-kを代入したものを、(1)に代入すると、(2)を得ます。(見難くてすいません)

torahuzuku
質問者

お礼

今日は。早速のご回答有難うございます。 ((1*2*…*2m)/(2*4*…2m))/2^m に気付きませんでした。 >(見難くてすいません) とんでもないです。こちらこそ分かり辛い質問文に、分かり易く丁寧にお答え頂きましてとても感謝しています。よく理解できました。またの質問の際も宜しくお願い致します。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • ルジャンドル多項式の漸化式の導出

    ルジャンドル多項式P_n(x)が満たす漸化式 (n+1)P_n+1(x) - (2n+1)xP_n(x) + nP_n-1(x) = 0 の導出について質問させてください。 母関数の展開式を微分して係数比較という方法での導出はよく見かけるのですが、 『理論電磁気学』(砂川重信、紀伊國屋書店)の付録p.457に別の導出方法が載っていました。(画像参照) 画像の(B・27)はロドリゲスの公式P_n(x)=(2^n・n!)^(-1)・(d^n/dx^n)(x^2-1)^nのことで、 確かにこれを代入すると(B・34)は正しいとわかるのですが、 (B・34)と(B・28)=ルジャンドルの微分方程式d/dx{(1-x^2)d/dxP_n(x)}+n(n+1)P_n(x)=0 から(B・35)一行目=最初に書いた漸化式が証明される。という点が分かりません。 (B・34)と(B・28)から(B・35)一行目を導く途中式をどなたか教えて頂けますでしょうか?よろしくお願いします。

  • 整数から整数へマップする多項式の条件

    【問題】多項式 p が以下の条件を満たす必要十分条件はなんですか? (1)n∈Z ⇒ p(n)∈Z (Zは整数の集合) (2)pのすべての係数は有理数 ---------------------------------------------------- 係数がすべて整数の場合以外に、いくつか思いつく限りの例を挙げてみました。 x/2 + (x^2)/2 x/6 + (x^2)/2 + (x^3)/3 一般化して(Π[k=0,n](x+k))/n! 以上の考察から Σ[n=0,∞](C_n*((Π[k=0,n](x+k))/n!)) (C_nは整数) で p の一部を表現できます。でも、必要十分条件まではまだまだ遠いです。これは線形代数の教科書で出てきた問題なのですが、どう線形代数を使ってよいのかもよく分かりません。考え方の道しるべを示していただけると助かります。

  • 補間多項式

    「相異なる点、x_0,x_1,・・・・,x_nに対して、任意の実数y_0,y_1,・・・,y_nがある。そのときp_n+1(x_i)=y_i(i=0,1,・・・,n)を満たす高々n+1次の補間多項式p_n+1がただ一つ存在する。」は真か偽を判定する問題です。考えたのですが偽でしょうか?定義は「与えられた関数y=f(x)に対して、相異なる点x_0,・・・,x_n-1(この点を標本点という)について、y_k=f(x_k),k=0,1,・・・,n-1とおく。このとき高々n-1次多項式p(x)としてp(x_k)=y_k,k=0,1,・・・,n-1となるものがある」理由はやはり高々n+1次というところが定義からづれているからです。しかし根拠が示せないので、アドバイスありましたら嬉しいです・・・

  • 直交多項式(ルジャンドル、エルミート、ラゲール)

    題意の3つの直交関数の直交性の証明が詳しく載っている本をどなたかご存知でしたらぜひご紹介ください。もしくは回答欄で示していただけると幸いです。 できれば微積分を駆使した証明があると嬉しいです。 一応以下に載せておきます。 ルジャンドル多項式; P_n(x)={1/(n! 2~n)}(d/dx)~n (x~2-1)~2 エルミート多項式; H_n(x)=(-1)~n exp(x~2/2) (d/dx)~2 exp(-x~2/2) ラゲール多項式L_n(x)=exp(x) (d/dx)~n {x~n exp(-x)}

  • 多項定理の無限大への拡張

    大学一年生です。 多項定理を無限大の場合に拡張して、 (Σ[n=1,∞]b_n*x^n)^k=(b_1*x+b_2*x^2+…)=Σ[n=1,∞]c_n*x^nとおいたとき、c_nを求めたいのですが、どう解けばいいのか分かりません。方針だけでも、どなたかお願いします。

  • 代数学の、多項式の問題を教えて下さい。

    f(X)=X^n+a1・X^(n-1)+a2・x(n-2)+・・・+an∈Z[x]を、最高次の係数が1の整数係数のn次多項式とする。 (1)Aが有理数でf(A)=0を満たす場合、Aは整数である事を示しなさい (2)Aが整数でf(A)=0を満たす場合、Aはanの約数である事を示しなさい。 (3)aは整数でa≠0,2であるとする。X^3-aX-1はQ[X]の既約多項式である事を示しなさい。 という問題です。 困っています。 分かる方、お願いいたします

  • P(0), P(1),P(2),・・・, P(n)が整数ならば、全ての整数kに対してP(k)は整数

    『nを自然数, P(x)をn次の多項式とする。P(0), P(1),P(2),・・・, P(n)が整数ならば、全ての整数kに対してP(k)は整数であることを証明せよ。』 数学的帰納法で解けるらしいのですが、分かりません。どなたか教えてください。

  • 多項式の存在の証明です。

    多項式に関する証明です。 0を含む自然数 n に対して, n+2次の実多項式 P_n で P_n(0)=P_n(1)=0 0≦r≦n-1 のとき, ∫t^r P_n(t)dt=0 積分区間は[0,1] ∫t^n P_(t)dt=1 積分区間は[0,1] を満たすものが存在することを示せ。という問題です。 t^r はt の r 乗を意味しています。 帰納法を用いて示してみようと思ったのですが,次数がずれてしまってうまくいきませんでした。 ご教授よろしくお願いします。

  • 熱力学(ルジャンドル変換)について

    エントロピーを(1/T,V,n)、(1/T,V,n)にルジャンドル変換すると (∂E/∂β)βμ,V=-(∂E/∂n)β,V(∂n/∂βμ)β,V(∂βμ/∂β)n,V+(∂E/∂β)n,V β=1/T という式が導けるはずなのですが、導き方がわかりません。 エントロピーを上記の通りにルジャンドル変換すると dS=-Ed(β)+pβdV-βμdn dS=-Ed(β)+pβdV+nd(βμ) になるのですが私にはだからどうした?という感じでこれからどうしたらいいのか全く分かりません。 ちなみにマクスウェルの関係式を使って導こうとしたのですがうまくいきませんでした。 導き方の方向性だけでも、何か思いついた方がいらっしゃいましたらアドバイスお願いします。

  • 不等式の問題がわかりません

    (1) 2x+3y≦6n, x≧0, y≧0 (aは正の整数) を満たす点P(x,y)で、x,yがどちらも整数であるもの(格子点)の個数を求めよ。 (2) 2x+3y+6z≦6n, x≧0, y≧0 z≧0 (aは正の整数) を満たす点P(x,y,z)で、x,y,zがすべて整数であるもの(格子点)の個数を求めよ。 という問題で、 (1)は不等式を図示して y=k(k=1,2・・・)とy=-(2/3)x+2n の交点は( 3n-(3/2)k , k ) 交点が整数であるために2k=mとおくと、 y=m上の格子点の数は 3n-3m+1 よって、1≦y≦2nにおいて、y=(偶数)上の格子点の数は Σ[m=1,n](3n-3m+1) =(3/2)n^2-(1/2)n また図から、y=2k-1上の格子点の数は y=2k=m上の格子点の数より1多いので、 1≦y≦2nにおいて、y=(奇数)上の格子点の数は Σ[m=1,n]{3n-3m+2} =(3/2)n^2+(1/2)n y=0上の格子点の数は3n+1より、 求める値は (3/2)n^2-(1/2)n+(3/2)n^2+(1/2)n+3n+1 =3n^2+3n+1 ここまでは分かりました。 (2)はどうやっていいか手の付け方も分かりません。 (1)を使って簡単にして解くような気はします(分かりませんが)。 分かる方お願いします。