• ベストアンサー

多項式の存在の証明です。

多項式に関する証明です。 0を含む自然数 n に対して, n+2次の実多項式 P_n で P_n(0)=P_n(1)=0 0≦r≦n-1 のとき, ∫t^r P_n(t)dt=0 積分区間は[0,1] ∫t^n P_(t)dt=1 積分区間は[0,1] を満たすものが存在することを示せ。という問題です。 t^r はt の r 乗を意味しています。 帰納法を用いて示してみようと思ったのですが,次数がずれてしまってうまくいきませんでした。 ご教授よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • ramayana
  • ベストアンサー率75% (215/285)
回答No.1

n+2次の多項式には、定数項を含めて n+3 個の係数があります。一方、与えられた条件は、n+3 個で、すべてこれらの係数の1次式で表されます。そこで、問題は、これらの係数を未知数とする n+3 元1次方程式を解くことに帰着されます。あとは、n+3 個の条件が一次独立であることを示せばよろしい。

sakasukys
質問者

お礼

なるほど! 一時独立であることは容易に確かめられたのでできました! こういったものを自分で思いつけるようになりたいです... ありがとうございます。

関連するQ&A

  • 数学的帰納法の証明

    自然数に関する数学的帰納法の原理が自然数が整列集合であることと同値であるということはわかっていますが 次のように数学的帰納法を証明した場合どこに整列集合の性質が使われているor論法が間違っているのでしょうか。 数学的帰納法 自然数nに関する命題をP(n)とする (ⅰ)P(0)が成り立つ (ⅱ)すべての自然数nに対して、P(n)が成り立つならばP(n+1)も成り立つ この2条件が満たされているときP(n)はすべての自然数nについて成り立つ (論理記号でかくと(ⅱ)は(∀n∈N(P(n)⇒P(n+1))だと思います) [証明] P(n)が成り立たないような集合をSとする Sが空集合である事を示せばP(n)がすべての自然数nについて成り立つ事になる Sが空集合でないと仮定するとm∈Sとなるようなmが存在する このとき条件(ⅱ)を次のように書き換えて (II)すべての自然数nに対して、P(n+1)が成り立たないならばP(n)も成り立たない と考えると P(m)が成り立たないのでP(m-1)も成り立たないことになる このときP(m-1)が成り立たないのでP(m-2)も成り立たない 以下続けると結局 P(1)が成り立たないのでP(0)も成り立たないことになるが これは(ⅰ)に反する よってSが空集合でないという仮定が間違っていたことになる ゆえにSは空集合であり命題P(n)がすべての自然数nに対して成り立つことが示された

  • ワイエルシュトラスの多項式近似定理の証明

    詳しく証明を書きたいのですが、教科書等で調べてもわかりません。 f(t)を有界閉区間[a,b]で連続な任意の関数とするとき、区間[a,b]上一様にf(x)に収束するような多項式の列{Pn(t)}が存在する。 というものの証明です。

  • この数学的帰納法を用いた証明問題がわかりません。

    この数学的帰納法を用いた証明問題がわかりません。 (2)n 回微分可能な関数f(x) のn 次導関数をf^(n)(x) で表しf^(0)(x) = f(x) と定 義するとき,次の公式(P) が成立する.以下の問(a), (b) に答えなさい. (P)d^n/dx^n ( e^xf(x) ) =Σ(r=0からn)t(n r)e^xf^(r)(x) ( n ≧ 1, t(n r)=n!/( r!(n - r)! ) ) (a) g(x) = x^2e^x のn 次導関数g^(n)(x) を求めなさい. (b) 数学的帰納法を用いて公式(P) を証明しなさい.ただし,必要であれ ば次の性質を用いてよい. t(n ,r - 1)+t(n,r)=t(n + 1,r) (r ≧ 1; n ≧ r) -------------------------------------------------------------- 画像が見づらくて申し訳ありません。 (a)はh(x)=x^2と置くと、 g^(n)=d^n/dx^n( e^xh(x) )=Σ(rからn)e^x h^(r) (x) これで合っていますか? (b)は n=1のときは明らかに成り立つ。 n=k(kは自然数)のとき成り立つと仮定し、n=k+1のときの式変形がどうもうまくいきません。 (n≧3のときh^(n)=0であるのはわかります。) どなたか解説をよろしくお願いします。

  • その証明方法は何と言うのですか?

    帰納法によってPという命題を証明とするとき、P(0)を確認してからP(n)を仮定にしてP(n+1)が成り立つことを証明するのが普通です。けれど、Pを証明するためにP(n)しかを仮定しないことは足りない時もあります。そのため、P(n)且つP(n+1)が成り立つことを仮定してP(n+2)が成り立つことを証明しなければなりません。 二重帰納法は別なものとは分かるけれど、上記の方法は何と言うのですか。

  • P(0), P(1),P(2),・・・, P(n)が整数ならば、全ての整数kに対してP(k)は整数

    『nを自然数, P(x)をn次の多項式とする。P(0), P(1),P(2),・・・, P(n)が整数ならば、全ての整数kに対してP(k)は整数であることを証明せよ。』 数学的帰納法で解けるらしいのですが、分かりません。どなたか教えてください。

  • 留数の関係式の証明

    こんばんわ、大学2年のものです。 複素解析の証明問題なのですが、 Σ[n=-∞~∞]R(n) = -Σ[η]Res{R(z)π/tanπz;η} (ηは極) R(z)は有理関数で、z = n (n=…,-2,-1,0,1,2,…)を極としない。 R(z)は、分子の次数≦分母の次数-2 というものです。おそらく積分を用いるのだと思うのですが、 とっかかりがわからずお手上げ状態で困っています。 アドバイスやヒントなど頂けたら嬉しいです。 お願いします。

  • 不等式の証明

    FKG不等式に関連する次の不等式の問題: 数列{a_n},{b_n}を単調増大列とするとき、 (a_1b_1+a_2b_2+…+a_nb_n)/n≧{(a_1+a_2+…+a_n)/n}{(b_1+b_2+…+b_n)/n} を示せ。 を解きたいのですが、Abel変形(積分の部分積分に相当するテクニック)を使えば簡単に証明できるのは知っています。で、この不等式、数学的帰納法では解けないのか?ということが少し気になりました。 n=1なら自明で、n=kで成立すれば、n=2kで正しい、ということは容易に分かります。したがってn=2^mタイプの自然数に対しての成立は簡単ですが、任意のnについて成り立つことを帰納法でうまく示すことは出来ますか?何かアイデアがあればぜひ教えてください。n=k(≧2)で成り立てば、n=k-1でも成り立つ、みたいなことが言えるとよいのですが。

  • 数学的帰納法の証明問題が分かりません

    nが自然数のとき、 1^2+2^2+…+n^2=1/6n(n+1)(2n+1) が成り立つことを数学的帰納法で証明せよ。

  • 多項式に関する不等式の証明

    今,Pを三角多項式として P=Σ(aj)e^ijt (n<|j|<4nでの和) とします。 このとき, ||P||∞<3(√n) ||P||L^2 ∞ノルムはsupを取るノルムで、||P||L^2 はL^2ノルムです。 テキストに唐突に書かれていたのですが,どうも証明できません。。。 よろしければ,ご教授ください。

  • 証明

    1+2分の1+3分の1....+n分の1≧(n+1)分の2n を証明せよ。(nは自然数のとき) 数学的帰納法を使う証明らしいのですが、答えをみてもよく計算の仕方がわかりません。 詳しい解説、解くに計算のところをお願いします。