• 締切済み

多項式に関する不等式の証明

今,Pを三角多項式として P=Σ(aj)e^ijt (n<|j|<4nでの和) とします。 このとき, ||P||∞<3(√n) ||P||L^2 ∞ノルムはsupを取るノルムで、||P||L^2 はL^2ノルムです。 テキストに唐突に書かれていたのですが,どうも証明できません。。。 よろしければ,ご教授ください。

みんなの回答

noname#199771
noname#199771
回答No.1

突っ込みどころが多すぎてどう言ったものか。。。 ・i,j,n,t,ajは何ですか? ・「supを取るノルム」とは?nを動かして?tを動かして?  ajを動かして?そして何のsup? ・「L^2ノルム」とは?測度は何ですか? ・例えばajが全部0ならノルムの定義が何であれ成り立た  ないように見えます

関連するQ&A

  • 多項式の存在の証明です。

    多項式に関する証明です。 0を含む自然数 n に対して, n+2次の実多項式 P_n で P_n(0)=P_n(1)=0 0≦r≦n-1 のとき, ∫t^r P_n(t)dt=0 積分区間は[0,1] ∫t^n P_(t)dt=1 積分区間は[0,1] を満たすものが存在することを示せ。という問題です。 t^r はt の r 乗を意味しています。 帰納法を用いて示してみようと思ったのですが,次数がずれてしまってうまくいきませんでした。 ご教授よろしくお願いします。

  • 調和多項式について

    偏微分作要素を∂とし∂(e1)=Σ(∂/∂xi)、∂(e2)=Σ∂i∂j…∂(en)=∂1∂2…∂nとする。({ek|1≦k≦n}は基本対称式を表す。) 調和多項式の定義: 多項式f(x)∈C[x1,・・・,xn]が調和であるとは、∂(ek)f(x)=0 (1≦k≦n)を満たす。 このとき、ニュートンの公式を使うと調和多項式の定義はべき乗和多項式を使っても同じ、つまり、f(x)が調和多項式であるとは、∂(pk)f(x)=0(1≦k)が成り立つことと同値です。 という問題がありました。ニュートンの公式を使うということは、べき乗和多項式が基本対称式で表されるということなのでしょうか?ニュートンの公式をどのように使って同値であることを示せばよいのかわからないので教えてください。お願いします。

  • ベッセルの不等式の証明について

    フーリエ解析におけるベッセルの不等式の証明について、質問です。 私が持っている解析学の参考書によると、 Sn[f]とfとの差の積分を評価すると次のように求める不等式が得られる。 0≦1/(2l)∫(-l,l){|Sn[f](x)-f(x)|^2}dx と書いてあり、ここからの式変形で証明しているのですが、 なぜ、どこからこの差の積分がでてきたのでしょう?? 不等式の証明なので大きいほうから小さいほうを引いて正になることを 証明したらいいと思って挑戦しましたが途中でうまくいきませんでした… やはり参考書の言いなりになるしかないのでしょうか? もしよろしければ証明も詳しく教えていただければ幸いです。 よろしくおねがいします。 P.S ベッセルの不等式 Σ(k=-∞,∞)|Ck(f)|^2 ≦1/(2l)∫(-l,l){|f(x)|^2}dx Ck(f)=1/(2l)∫(-l,l){f(t)*e^(-ikωt)}dt Sn[f](x)=Σ(k=-N,N)Ck(f)*e^(ikωx) 記号など見づらくて申し訳ないです。

  • 直交多項式(ルジャンドル、エルミート、ラゲール)

    題意の3つの直交関数の直交性の証明が詳しく載っている本をどなたかご存知でしたらぜひご紹介ください。もしくは回答欄で示していただけると幸いです。 できれば微積分を駆使した証明があると嬉しいです。 一応以下に載せておきます。 ルジャンドル多項式; P_n(x)={1/(n! 2~n)}(d/dx)~n (x~2-1)~2 エルミート多項式; H_n(x)=(-1)~n exp(x~2/2) (d/dx)~2 exp(-x~2/2) ラゲール多項式L_n(x)=exp(x) (d/dx)~n {x~n exp(-x)}

  • ノルムについて

    線形写像Aに対して∥A∥=sup{∥Ax∥:x∈R^n,∥x∥≦1}で定める。 このとき、(L(R^n,R^m),∥・∥)はノルム空間になる。 A∈L(R^n,R^m)に対して次が成り立つことを示せ。 ∥A∥=sup{∥Ax∥:∥x∥=1,x∈R^n} どう証明していいのかわかりません。 よければ解説お願いします。 質問がわかりづらくてすみません。

  • ワイエルシュトラスの近似

    ワイエルシュトラスの近似定理 「f:有界区間[a,b]において連続関数  任意のε>0に対して  sup|f(x)-P(x)|<ε を満たす多項式Pが存在する」 についてなのですが、 これがどうしていえるのでしょうか? 疑問に思い、証明を考えてみたのですが、フェイェールの定理と区間においてe^(ix)が多項式に近似されることを考えて証明できるかと思いやってみましたが、根本的に自分の方針が間違っているのか、結局証明が分かりませんでした。 どなたか証明が分かる方は、私にご教授していただけませんでしょうか。宜しくお願いいたします。

  • 指数法則の証明

    指数法則e^(z_1)・e^(z_2)=e^(z_1+z_2)を {(z_1)^n/n!}+{(z_1)^(n-1)/(n-1)!}{(z_2)/1!}+…+{(z_2)^n/n!}=(1/n!){(z_1)+(z_2)}^n が成り立つことを利用して証明する。 解答では、 e^(z_1)・e^(z_2) ={Σ[k=0,∞]((z_1)^k)/k!})={Σ[l=0,∞]((z_2)^l)/l!} =Σ[n=0,∞]{Σ[j=0,n]{(z_1)^(n-j)/(n-j)!}{(z_2)^j/j!} =Σ[n=0,∞]{(1/n!)Σ[j=0,n](n)(j){(z_1)^(n-j)}{(z_2)^j} =Σ[n=0,∞](1/n!){(z_1)+(z_2)}^n =e^{(z_1)+(z_2)} (4行目の(n)(j)は縦に書かれています。分かりにくくてすみません。) 解答の2行目はe^zの展開式なのは分かるのですが、2行目から3行目、3行目から4行目がどうして、こういう変形になるのか、分からず困っています。 ご教授お願い致します。

  • 解析学の基本事項の証明の仕方・・・

    解析学の基本事項の証明の仕方・・・ 上限・下限の証明を、∀、∃を使って、どう表記すべきか? 全てのsup , inf の記号の下に、 n∈Nが付きます。 sup(a_n)={a₁,a₂,a₃・・・・a_n} 、 sup(b_n)={b₁,b₂,b₃・・・・・,b_n} sup(a_n+b_n)=sup(a₁+b₁,a₂+b₂+・・・・・a_n+b_n}                                とするとき (1)a_n>0 ,b_n>0⇒ sup(a_n・b_n) <= sup(a_n)・sup(b_n) (2)a_n>0 ,b_n>0⇒ inf(a_n・b_n) >= inf(a_n)・inf(b_n) (3)sup(a_n - b_n) >= sup(a_n) - sup(b_n) (4)inf(a_n - b_n) <= inf(a_n) - inf(b_n) (5)inf(a_n + b_n) >= inf(a_n) + inf(b_n) 上記(1)~(5)の証明を、∀、∃を使ってどう表記すべきか? 基本的な性質みたいなものなので、三角不等式の証明みたいな感じに なるような気はしますが、記号の使い方に慣れていないので手が出ません。 どのように記述したら証明した事になるのでしょう?

  • 定積分の不等式の証明問題について教えてほしいです。

    定積分の不等式の証明問題について教えてほしいです。 ㅤㅤㅤㅤㅤㅤ ∫[0,n]1/(x+1)dx<1+1/2+・・・+1/n<1+∫[1,n](1/x) dx を証明せよ という問題なのですが、この問題って真ん中はn個の長方形の面積の和で y=1/(x+1)とy=1/xのグラフを書けば図から明らかになってしまいます。 しかし、グラフはイメージなので分かりやすい反面、限りがある範囲しか図示できず、正確性に欠ける気もします。 もっと良い証明方法はないでしょうか?分かる方おられましたら何卒ご教授いただければ幸いです。

  • 行列の証明問題 (固有値と固有ベクトルの性質)

    行列A=[a(jk)](j:行 k:列 )に関する諸命題を証明し、適当な例を用いて説明せよ。 ただし、λ(1),・・・,λ(n)はAの固有値とする。I:単位行列 (a)実固有値と複素固有値  Aが実行列のときには、その固有値は実数または共役複素数の対からなる。 (b)逆行列  逆行列A^(-1)は0がAの固有値でないとき、またそのときに限り存在する。  その固有値は1/λ(1),・・・,1/λnである。 (c)トレース  Aの対角成分の和をトレースまたは対角和という。これは固有値の和に等しい。 (d)スペクトル移動  行列A-kIは固有値λ(1)-k,・・・,λ(n)-kをもち,Aと同じ固有ベクトルをもつ。 (e)スカラー倍、ベキ  行列kAの固有値はkλ(1),・・・,kλ(n)であり、行列A^m(m=1,2・・)の固有値は  λ(1)^m,・・・,λ(n)^mである。固有関数はいずれもAの固有関数と同じである。 (f)スペクトル写像定理  ’多項式行列’  p(A)=k(m)A^m+k(m-1)A^(m-1)+・・・+k(1)A+k(0)I は固有値    p(λj)=k(m)λj^m+k(m-1)λj^(m-1)+・・・+k(1)λ(1)^(m-1)+k(0) (j=1,・・・,n) をもち、Aと同じ固有関数をもつ。 (g)ペロンの定理  正の成分l(12),l(13),l(31),l(32)をもつレスリー行列Lには1つの正の固有値が  存在することを示せ。 これらの問題(証明)が難しくて分かりません。教えて下さい、お願いします。