• ベストアンサー
  • 困ってます

三角関数の問題

【2sinxcosx(2cosx+1)=0を解け。(0≦x<2π)】という問題があるのですが、 私は与式をsin2x(2cosx+1)=0として (i)sin2x=0のとき 2x=0、π ∴x=0、1/2π (ii)cosx=-1/2のとき x=2/3π、4/3π としたのですが解答を見ると 与式は問題文で与えられた通りになっていて (i)sinx=0のとき x=0、π (ii)cosx=0のとき x=1/2π、3/2π (ii)cosx=-1/2のとき x=2/3π、4/3π としているのですが、私の解答が何故違うのかは分かりません。ご回答よろしくお願い致します。

noname#172652

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数95
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • info22_
  • ベストアンサー率67% (2650/3922)

>(i)sin2x=0のとき >2x=0、π >∴x=0、(1/2)π ここが間違い。 0≦x<2πなので 0≦2x<4π この範囲で sin2x=0 の解は 2x=0,π,2π,3π ∴x=0,π/2,π,(3/2)π となります。 解答の2つの場合 >(i)sinx=0のとき >x=0、π >(ii)cosx=0のとき >x=(1/2)π、(3/2)π を合せたものに対応します。 注)2sinxcosx=sin(2x)=0なので「sinx=0,cos(x)=0」と「sin(2x)=0」は等価なので解は意一致しないといけない。 > (iii)cosx=-1/2のとき >x=(2/3)π、(4/3)π こちらは合っています。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

>>0≦x<2πなので 0≦2x<4π 定義域の書き換えを忘れていたのですか…注意力散漫ですね。ご回答ありがとうございました☆

関連するQ&A

  • 三角関数の微分

    三角関数の微分が解けません。 三角関数の法則を利用して答えは纏めた形になるのですが、上手く纏める方法が思いつきません。 1. y=sin^2xcos^3(2x) y'=2sinxcosx*cos^3(2x)+sin^2x*(-6)cos^2xsinx Ans:y'=sin2xcos^2(2x)*{1-8sin^2(x)} 2sinxcosxを2倍角の公式を利用したりして纏めましたが答えにたどり着けません。 また、 2. y=sinx/1+tan^2(x) y'=cosx{1+tan^2(x)}-sinx*2tanx{1/cos^2(x)} Ans:y'=cosx{1-3sin^2(x)} 纏め方について助言お願いします。

  • 三角関数

    問(1)方程式を解く 0≦x<2πの時 cos2x=cosx cos2x=cosx cos2x-cosx=0 cos(2x-x)=0 cosx=0 ∴x=0,π/2,3π/2 だと思ったのですが、答えが違います。どこが間違っているのでしょうか? 問(2)不等式を解く 3√3sinx+cos2x-4<0 これはどうやっていいか全くわかりません。先ずsinかcosかどちらかにそろえると思うのですが… 問(3)最大値、最小値を求める。 0≦x<πの時 y=cos^2x+sinx y=cos^2x+sinx =1-sin^2x+sinx (sinx=tとおき) =-t^2+t-1 =-(t^2-t)-1 =-(t-1/2)^2+5/4 と最大値が5/4とはわかるのですが最小値はどうやって求めたらいいのでしょうか?与式に0orπを代入するのですか? 問(4)最大値、最小値を求める 0≦x<π/2の時 y=cos^2-4cosxsinx-3sin^2x これは因数分解できないと思うのですが、どうすればいいのでしょう。-4cosxsinxのところがどうしても整理できないのですが(sin,cosどちらかにそろえること) どれか一つでもいいのでよろしくお願いします。

  • 三角関数

    先程は失礼しました。 y=3(sinx)^2+4sinxcosx-(cosx)^2 が y=3* (1-cos2x)/2 + 2sin2x - (1+cos2x)/2 になる過程がよく分かりません。 sin2x-cos2x=√2sin(2x- π/4)  となる過程もよく分かりません。 sin2x+cos2X  だったらどうなるのでしょうか。

その他の回答 (1)

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

sin2x=0 からなぜ 2x=0、π となるのですか?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございました☆

関連するQ&A

  • 微分 三角関数

    y=cosx/sinxを微分すると y'={(cosx)'sinx-cosx(sinx)'}/(sinx^2) ={-sinxsinx-cosxcosx}/sin^2x ={-(sin^2x+cos^2x)}/sin^2x =-1/sin^2x で ={-(sin^2x+cos^2x)}/sin^2xからどうして =-1/sin^2xになるんですか? 教えてください

  • 三角関数

    こんばんは。 三角関数の問題なのですが、行き詰ってしまいました(・・;) 誰か助けてください(o>_<o) 1.0≦x<2πのとき、次の不等式を解け。  (1)sin2x>sinx    2倍角の公式を使って2sinxcosx-sinx>0に直し、sinx(2cosx-1)>0としたところで、わからなくなってしまいました。              2.0≦x<2πのとき、次の関数の最大値と最小値、およびそのときのθの値を求めよ。      (1)y=sinθ-cosθ 三角関数の合成を使うということはわかるのですが、どうやって使えばよいのかがわかりません。 よろしくお願いします(×_×)

  • 三角関数の導関数について

    y=cos^2x =-2sinxcosx になるのまではわかったんですが、解答をみるとそのさきに =-2sinx と書いてあるんです どうやってこれを導き出したのか教えてもらえませんか それと、 y=-<tanx>'/tan^2x =-1/tan^2x ・ 1/cos^2x から =-1/sin^2x になるのもわかりません・・・ 数IIIをとっているのにそんなこともわからないのははずかしいのかもしれませんが テストがあるのでできれば早く教えてほしいです お願いします

  • 三角関数の合成の問題について

    0°≦x≦90°のとき、2sinx+cosxの最大値と最小値を求めよ。(大学への数学IIP68) という問題があるのですが、 解答) 図1のようにαを定めると、45°<α<90°であり、 (図1とはx軸方向に1、y軸方向に2を取りその棒の距離を√5、なす角をαとした図です。) 2sinx+cosx=√5[cosx*(1/√5)+sinx*(2/√5)] =√5(cosx*cosα+sinx*sinα)=√5cos(x-α) 0°≦x≦90°により、-α≦x-α≦90°-αであるから、 x-α=0°のとき最大値√5を取り、 x-α=-α、つまりx=0°のとき最小値2sin0°+cos0°=1を取る。 (おわり) 何故最初にわざわざ45°<α<90°と置くのか分かりません・・・ どうかよろしくお願い致します。

  • 三角関数について

    1)半角の証明でcos(2A) = cos(A)^2 - sin(A)^2 = cos(A)^2 - { 1 - cos(A)^2 } = 2* cos(A)^2 - 1までできたのですが、そのあとがわかりません。なぜcos(A)^2 = { 1 + cos(2A) }/2このようになるんですか。 2)0≦x<πの範囲でsin(2x)=cosxを満たす角をすべて答えよ。 で、この問題は手の付けようがありません。2倍角の公式を使うのですか? 2sinxcosx=cosxでcosxにそろえて因数分解することはわかったのですが、ここからまったくわかりません。このあと、どうなるのでしょうか。

  • 三角関数

    (1+cosα+cosβ)cosx-(sinα+sinβ)sinxが (√(1+cosα+cosβ)^2+(sinα+sinβ)^2)sin(x+γ) γ=定角 なる過程がわかりません。 ご教示いただければ有難いです。よろしくお願いします

  • 三角関数の問題

    やり方がまったくわかりません。 問題は↓ 「次の式をr*sin(x±α)またはr*cos(x±α),ただしr>0,αは鋭角,の形に表せ.」 (1)cosx-sinx (2)√3*sinx-cosx (3)√3*cosx-sinx (4)√3*cosx+sinx という感じです。 やり方がわかる方ヒントをください。

  • 三角関数で範囲

    y=cosX-2sinX という問題です。 合成すると y=√5cos(X+α) ここで、 だだしαはcosα=1/√5 sinα=2/√5 となっています。 計算上 cosα=2/√5が正しくないですか?・・・★ 例を書くと、 cosX+sinXでも √2cos(X + 1/√2) つまりcosα=1/√2になってるわけで、 ★と同じことをしているわけだから、 あれは間違っているのでは・・・ あとまだ解答は続くんですが、 0≦X≦π より α ≦ X+α ≦ π+α ここまでは納得ですが、次に -1≦cos(X + α)≦1/√5 これは円をかくと大体わかりました、 しかし次のいきなり答え。 最大値1(X = 0のとき) 最小値-√5(X = π-α のとき) π-αっていうのもよくわからないです。 アドバイスお願いします・・

  • 三角関数の方程式がわかりません.教えてください.

    三角関数の方程式がわかりません.教えてください. 角度は弧度法を用いるとして 「sin2x+sinx=0を満たすxの値を求めよ.」 という問題がわかりません 倍角の公式により,sin2x=2sinx*cosxなので 与式⇒2sinx*cosx+sinx=0   ⇒sinx(2cosx+1)=0 よって,sinx=0またはcosx=-1/2を満たすxを求めると (πは整数とする)x=nπ,2π/3+2nπ,4π/3+2nπ だと思ったのですが, 答えには (2nπ+1)π,2π/3+2nπ,4π/3+2nπ とありました. なぜx=nπ(動径が0またはπのところ)ではなく(2nπ+1)π(動径がπのところ)なのですか?

  • 三角関数・不等式

    ベストアンサーを選んで締め切ってしまったので、申し訳ないですがもう一度同じ質問をさせていただきます。途中まで解いたのですが躓いてしまいました。 不等式cos2x-sinx≦0を満たすxの値の範囲を求めよ。ただし、0≦x<2πとする。 cos2x=1-2sin^2xを与式に代入 -2sin^2x-sinx+1≦0 2sin^2x+sinx-1≧0 (2sinx-1)(sinx+1)≧0 sinx≦-1,1/2≦sinx sinx=-1のとき、x=3/2π sinx=1/2のとき、x=π/6, 5/6π この後をどう続ければいいかわからないです。 回答、よろしくお願いします。