• ベストアンサー
  • すぐに回答を!

三角関数の合成

0≦x<2πのとき、関数 y=sinx+√3cosx の最大値、最小値を求めよ。という問題です。 sinx+√3cosx = 2sin(x+π/3) y = 2sin(x+π/3) と、合成はしたのですが、 0≦x<2πから、π/3≦x+π/3<7/3πの範囲?でどう出していったら良いのか分かりません;;; ご回答宜しくお願いします!

noname#158192

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数1014
  • ありがとう数4

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • info22_
  • ベストアンサー率67% (2650/3922)

>sinx+√3cosx = 2sin(x+π/3) >y = 2sin(x+π/3) ここまでOK。 >0≦x<2πから、π/3≦x+π/3<7/3πの範囲? この範囲でyの最大値は2 このときのxは以下のように求めます。 sinsin(x+π/3)=1の時ですのみなので  x+π/3=π/2 の時しかありません。∴x=π/2-π/3=π/6 この範囲でのyの最小値は-2。 このときのxは以下のように求めます。 sinsin(x+π/3)=-1の時のみですから  x+π/3=3π/2 の時しかありません。∴x=3π/2-π/3=7π/6

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございます! なんとか理解することができ、とても助かりました。

関連するQ&A

  • 三角関数の合成について

    √3cosx - sinx=1 (0≦x≦2π) の解く方法がわかりません。 答はx=π/6,3π/2 √3cosx-1・sinx=1 三角関数の合成を利用して 2(√3/2 cosx -1/2 sinx)=1 2・sin(x-60)=1 sin(x-60)=1/2 ここで0≦π≦2πより -60≦x-60≦120 Y=1/2 までしかわかりません。 どのように答に導くかわかりません。 おねがいします。

  • 三角関数

    0<=x<2π、0<-y<=2πとする。連立方程式 siny-cosx=-1・・・(1) sinx+cosy=-√3・・・(2) を満たすとき {1}sin(x-y)の値を求めよ。 {2}この連立方程式を解け。 という問題で{1}は1と解かりました。 また{2}のx-y=-3/2π、π/2からy=x+3/2π、 y=x-π/2も解かったのですがここから 「「y=x+3/2π、のとき(1)から2cosx=1 (2)から2sinx=-√3」」 0<=x<2πから x=5/3π このときy=19/6πとなり不適。 の特に「「 」」でくくった部分がなぜそうなるのか解かりません。 だからy=x-π/2のとき(1)から2cosx=1 (2)から2sinx=-√3にもなぜなるのか解かりません。 教えてください。 又これは個人的思うのことなのですが、三角関数って他の数学の科目に比べて難しいと思いませんか?

  • 三角関数の合成の方程式

    【0≦x<2πのとき、sinx+cosx=1/√2を解け。】という問題です。 合成して、    sinx+cosx=√2sin(x+π/4)、 方程式は √2sin(x+π/4)=1/√2        sin(x+π/4)=1/2   0≦x<2πから、π/4≦x+π/4<9/4π …教科書を見ながら解いて、ここまでは理解できたのですが、 この先どうやってxの値を出せばいいのか分かりません。 分かりやすく教えて下さい。宜しくお願いします!

その他の回答 (2)

  • 回答No.3
  • alice_44
  • ベストアンサー率44% (2109/4758)

> π/3≦x+π/3<7/3πの範囲?でどう出していったら良いのか 要は、定義域が sin の一周期を含んでいるということですから、 y = 2 sinθ, 0≦θ<2π の最大値、最小値でも、 y = 2 sinθ, π/3≦θ<7/3π の最大値、最小値でも、同じことです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございます。 お礼が遅くなってしまいすみません;; お陰で漸く問題が解けました!

  • 回答No.1

そこまで出来たら 縦に二倍、負の方向にπ/3のサインのグラフをかいて、求めた範囲の中での最大値と最小値を求めればオッケーです

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます! グラフですか…ちょっと苦手なんですよね^^;; ともあれ、頑張って解いてみます

関連するQ&A

  • 三角関数の合成の手前で。

    問題がy=2sin(x-π/6)+3cosx なんですが、コレの最大値最小値を求めるもの。 なんか合成する前に、 y=√3sinx+2cosx に変化させてるんです。 そのあと y=√7sin(x+α) [ただし、αはsinα=2/√7 , cosα=√3/√7 を満たす角] と合成してあります。 合成の前の変化がどうやってるのかわかりません。 あと、なぜアルファーなのかもわかりません。 アドバイスお願いします。

  • 三角関数の合成の問題について

    0°≦x≦90°のとき、2sinx+cosxの最大値と最小値を求めよ。(大学への数学IIP68) という問題があるのですが、 解答) 図1のようにαを定めると、45°<α<90°であり、 (図1とはx軸方向に1、y軸方向に2を取りその棒の距離を√5、なす角をαとした図です。) 2sinx+cosx=√5[cosx*(1/√5)+sinx*(2/√5)] =√5(cosx*cosα+sinx*sinα)=√5cos(x-α) 0°≦x≦90°により、-α≦x-α≦90°-αであるから、 x-α=0°のとき最大値√5を取り、 x-α=-α、つまりx=0°のとき最小値2sin0°+cos0°=1を取る。 (おわり) 何故最初にわざわざ45°<α<90°と置くのか分かりません・・・ どうかよろしくお願い致します。

  • 三角関数の問題について

    0≦x<2πでsinx≧sin(x-π/3) を解く過程でsinx-(sinx×cosπ/3-cosx×sinπ/3)≧0から1/2sinx+√3/2cosx≧0になる解き方が分かりません。分かりやすく教えてくださいおねがいします!

  • 三角関数で範囲を求める

    関数 f ( x ) = ( sinx - 1 ) ( cosx - 1 ) について、次の問いに答えよ。 問、sinx + cosx = t とおくとき、tのとり得る値の範囲を求めよ。 この解答で三角関数の合成の公式が使われているのですが、解説では t = sinx + cosx = √2 * sin *( x + π/4 ) となっています。 自分で公式を当てはめるとπ/4にあたる部分は1となってしまうのですが、なぜπ/4なのですか?

  • 三角関数

    問(1)方程式を解く 0≦x<2πの時 cos2x=cosx cos2x=cosx cos2x-cosx=0 cos(2x-x)=0 cosx=0 ∴x=0,π/2,3π/2 だと思ったのですが、答えが違います。どこが間違っているのでしょうか? 問(2)不等式を解く 3√3sinx+cos2x-4<0 これはどうやっていいか全くわかりません。先ずsinかcosかどちらかにそろえると思うのですが… 問(3)最大値、最小値を求める。 0≦x<πの時 y=cos^2x+sinx y=cos^2x+sinx =1-sin^2x+sinx (sinx=tとおき) =-t^2+t-1 =-(t^2-t)-1 =-(t-1/2)^2+5/4 と最大値が5/4とはわかるのですが最小値はどうやって求めたらいいのでしょうか?与式に0orπを代入するのですか? 問(4)最大値、最小値を求める 0≦x<π/2の時 y=cos^2-4cosxsinx-3sin^2x これは因数分解できないと思うのですが、どうすればいいのでしょう。-4cosxsinxのところがどうしても整理できないのですが(sin,cosどちらかにそろえること) どれか一つでもいいのでよろしくお願いします。

  • 三角関数

    三角関数の問題で解けないものがあります。 教えていただけるとありがたいです。 問題;関数cosX+2√3sin(X+π/3)での最大値と最小値を答えろ。 というのもです。 2√3sin(X+π/3)を加法定理で崩して cosX+2√3sin(X+π/3)=√3sinX+4cosX=√19(X+θ) と、合成まではもっていくことができました。 しかし、ここからどのようにして最大値と最小値を求めたらよいのでしょうか。 解法と最大値と最小値の解を教えていただけるとありがたいです。 ご回答おねがいします。

  • 三角関数

    こんばんは。 三角関数の問題なのですが、行き詰ってしまいました(・・;) 誰か助けてください(o>_<o) 1.0≦x<2πのとき、次の不等式を解け。  (1)sin2x>sinx    2倍角の公式を使って2sinxcosx-sinx>0に直し、sinx(2cosx-1)>0としたところで、わからなくなってしまいました。              2.0≦x<2πのとき、次の関数の最大値と最小値、およびそのときのθの値を求めよ。      (1)y=sinθ-cosθ 三角関数の合成を使うということはわかるのですが、どうやって使えばよいのかがわかりません。 よろしくお願いします(×_×)

  • 三角関数の合成

    三角関数の合成 π/6≦θ≦5/6πのとき、sin{2θ-(π/6)}-cos2θ の最大値と最小値を求めよと言う問題があります。 この式が √3/2 sin2θ-3/2 cos2θ という式になるのはわかりました。でもここからどのようにして合成するのでしょうか? 三角関数の合成の式が√(a^2+b^2) sin(θ+α) なので√3 sin(2θ+α) になるのはわかるのですがどうやってαの部分を出すのかわかりません… 図を書いて求めようとしたのですがさっぱりで… どなたか教えてください。よろしくお願いしますm(__)m

  • (数学II)加法定理、三角関数の合成

    次の関数の最大値と最小値を求めよ。 (1)y=6sinx-2√3cosx (2)y=5cosx+12sinx という問題なんですが、 解答を見てみると (1)の解答に y=6sinx-2√3cosx=4√3sin(x-π/6) と書いてあるのですが、どうやってπ/6を出したのか分かりません。 他の簡単な数字(1/2とか)なら出せるのですが、こうゆう場合、どう計算したら良いのでしょうか? そしてもう1つ分からない所があって、 (2)の解答に y=5cosx+12sinx=13sin(x+a) ただし、角aはcosa=12/13,sina=5/13を満たす角である。 と書いてあるのですが、何故(1)のようにaの角度を出さず ただし~という文をつける必要があるのでしょうか? ※√のすぐ隣にある数字は、√の中に入っているものです。 ※分数は 分子/分母 と表示させて頂きました。

  • 三角関数の最大・最小問題がわかりません

    関数cosx+2√3sin(x+π/3)の0≦x≦π/2での最小値と最大値を求めよ。 と言う問題で 三角関数の合成より 2√3sin(x+π/3)=√3sinx+cosx であるので 与式=√3sinx+4cosx   =√19sin(x+θ) ただし角θは cosθ=√3/√19 sinθ=4/√19 を満たす角である。 というところまで分かりました。 しかしこの続きをどう書けば良いか分かりません。 かなり初歩的な問題であるのは承知しておりますがお助けいただければ幸いです。 また書いた式自体も間違っていたらご指摘ください。 よろしくお願いいたします。