• 締切済み
  • すぐに回答を!

図形

△ABCにおいて、AB≠ACであるとする。∠Aの外角の二等分線と直線BCの交点をDとするとき、BD:CD=AB:ACであることを証明しなさい。これを「外角の二等分線の定理」といいます。 図形の証明は苦手なのでみなさんの力をお貸しください。 詳しく説明してくれるとありがたいです

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数153
  • ありがとう数0

みんなの回答

  • 回答No.1

>これを「外角の二等分線の定理」といいます。 ふざけてるな。 それが定理だって分かってるなら、検索ぐらいしてみろ。 何のためのネットなんだ。 書き込みが面倒だから、URLを貼っとく。横着するなよ。 http://kurihara.sansu.org/theory/kaku2bun2.html

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 平面図形

    △ABCにおいて、∠Aおよびその外角の二等分線と直線BCの交点をそれぞれD,Eとするとき、 1/BD+1/BE=2/BC が成り立つことを証明せよ。 という問題で、解説に(二等分線の性質による、辺の比は既知として)BD=AB/AB+AC×BC,BE=AB/AB-AC×BC と書いてあったのですが、全く理解できません、教えてきいただけないでしょうか?

  • 数学Aの平面図形(証明)

    数学Aの平面図形(証明) (1)三角形ABCにおいて、頂点Aにおける外角の二等分線上にAと異なる点Pをとると PB + PC > AB + AC 図は描けますが、証明の仕方が分かりません。 外角の二等分線が条件にあるので、使わなければいけないのだと思うのですが、どのように使うのかが分かりません。 (2)三角形ABCと三角形A'B'C'があって、3直線AA'、BB'、CC'が1点Xで交わるならば、直線BCとB'C'の交点P、CAとC'A'の交点Q、ABとA'B'の交点Rの3点P、Q、Rは一直線上にあることを示せ。 という問題です。 まず図形すら描けません。 どうやって証明するのでしょうか?

  • 中二数学 図形 もう一問おねがいします。

    △ABCで∠Bの二等分線と点Cにおける外角の二等分線の交点D。Dを通って辺BCに平行な直線と辺AB,ACの交点をE、Fとする。BE=6cm BC=7cmのとき、台形EBCFの周の長さを求めなさい。

  • 三角形の辺

    AC=9,BC=6,CA==5の△ABCにおいて、∠Aの外角の二等分線と直線BCをCの方向に延長したものとの交点をDとし、∠Bの二等分線とADとの交点をF,ACとの交点をEとする。 このとき,線分ECとCDの長さ、“AE/FD”の値を求めなさい。 という問題で (ⅰ)AB:BC=AE:EC EC=2 (ⅱ)AB:AC=BD:CD 30=4CD CD=15/2 というところまでは解けたのですが、“AE/FD”がどうしても解けません。助けてください!!

  • 二等分線定理の余弦定理による証明

     三角形ABCにおいて、角Aの二等分線を引き、BCとの交点をDとします。AB=a、AC=b、BD=c、CD=dとすると、a:b=c:dとなります。俗に二等分線定理と呼ばれるものですが、これを余弦定理によって証明する方法を教えていただけますでしょうか。  証明法は数ほどありますが、余弦定理を使ったやり方がわかりません。 

  • 中3 数学 図形

    AB=3cm、AC=2cmの△ABCがある。∠Aの外角の二等分線とBCの延長との交点をDとしAC∦EDとなるような点EをABの延長上にとる。CD=4cmであるとき、 (1)∠BACの二等分線とBCとの交点をFとするとき、BFの長さを求めなさい。 (2)△ABFと△ADEの面積比をもっとも簡単な整数の比であらわしなさい。 以上二問です。よろしくお願いします。

  • 数Iの問題

    △ABCにおいて AB=3 , AC=8 , ∠BAC=60°である。 ∠BACの二等分線と辺BCとの交点をD, ∠ABCの外角の二等分線と直線ADとの交点をEとすると BD:DC=AB:(オ) AE:ED=AB:(カ) である。 答えは オ→AC カ→BD どうしてそうなるのかわからないので 解説をお願いします。

  • 角の二等分線と比の定理の証明問題

    数Aの角の二等分線と比の定理2の証明ができなくて困っています。 定理2である、「AB≠ACである△ABCの頂点Aにおける外角の二等分線と辺BCの延長との交点Qは、辺BCをAB:BCに外分する。」をAB>ACの場合について証明せよ。 という問題です。 △ABCと△BQAで「二つの角がそれぞれ等しい」という相似条件を使って証明すると思うのですが、どうしても等しい角が見つかりません。 補助線なども利用するのでしょうか? ご教授よろしくお願いします。

  • 数学Aについての平面図形の問題です。至急よろしくお願いします。

    問.AB=16、BC=14、AC=12である三角形ABCにおいて、  角Aの二等分線と辺BCとの交点をDとする。DCの長さを求めよ。 この問題について説明しなければならないので、二つ質問させていただきます。 (1)まず、BD:DC=AB:ACがわかります。 何故このようになるのかは、定理の「ADが角Aの二等分線で、点Dが辺BCをAB:ACに内分するから」という説明で正しいですか? (2)DCの長さは、比から DC=3/7BC  =3/7×14  =6 ですが、何故3/7BCで求まるのですか? 説明は「BD:DCが4:3だから」ではダメですか? どうか今日中によろしくお願いいたします。

  • 図形

    角の二等分線の定理 (∠Aの二等分線がBCと交わる点をDとするこのとき、BD:CD=AB:ACである)を次の三通りの方法で証明せよ。 (1)面積比と三角形の面積の公式(底辺*高さ÷2)をりようする (2)上と同様だが正弦を用いて三角形の面積の公式も利用する (3)Cを通りADに平行な直線を用いる この三つについて解きたいのですが図形が苦手なのでどのようにすればいいのかわかりません。 金曜日にたぶん発表です。 やっていかないといけないのでわかりやすく教えてください