• ベストアンサー
  • 困ってます

中3【図形の相似】

下の問題の2の証明がよく分かりません;; 良ければ教えてください。 △ABCで、∠Aの二等分線と辺BCとの 交点をDとし、点Cを通りDAに平行な直線と 辺BAの延長との交点をEとします。 このとき、次の1、2を証明しなさい。  1 AC=AE(証明できました) 【2】 AB:AC=BD:DC 画像:http://www.rinku.zaq.ne.jp/bkcoh000/g.jpg

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数50
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • -Ren-
  • ベストアンサー率20% (1/5)

自分も中学3年です。受験頑張りましょう 【1】より、AC=AEなので  【2】は「AB:AE=BD:DCを証明しろ」ということだとわかります。 △BADと△BECは相似です。 ならば、もうわかるでしょう?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答有難う御座います。 理解できました♪ 受験お互い頑張りましょう!!

関連するQ&A

  • 図形の問題

    AB=2、BC=√6、CA=3の三角形と円Oがある。 円Oは点Aを通り点Bで直線BCに接している。また、円Oは辺ACに対してA以外の交点Dを持つ さらに、∠Aの二等分線と辺BCの交点をEとする。 (1)三角形ABC∽三角形BDCを証明せよ (2)線分CDの長さを求めよ。またBE:ECを最も簡単な整数比で求めよ (3)線分AE,BDの交点をFとするとき、AF/FEを求めよ。また、三角形ABF、四角形CDFEの面積をそれぞれS,TとするときT/Sを求めよ さっぱりわかりません。どなたか回答よろしくお願いします。

  • 数学Aについての平面図形の問題です。至急よろしくお願いします。

    問.AB=16、BC=14、AC=12である三角形ABCにおいて、  角Aの二等分線と辺BCとの交点をDとする。DCの長さを求めよ。 この問題について説明しなければならないので、二つ質問させていただきます。 (1)まず、BD:DC=AB:ACがわかります。 何故このようになるのかは、定理の「ADが角Aの二等分線で、点Dが辺BCをAB:ACに内分するから」という説明で正しいですか? (2)DCの長さは、比から DC=3/7BC  =3/7×14  =6 ですが、何故3/7BCで求まるのですか? 説明は「BD:DCが4:3だから」ではダメですか? どうか今日中によろしくお願いいたします。

  • 2角の二等分線の長さが等しい三角形は二等辺三角形

    △ABCにおいて∠Bの二等分線と辺CAとの交点をD、∠Cの二等分線と辺ABとの交点をEとするとき、線分BDと線分CEの長さが等しければAB=ACとなる。 この証明を教えて下さい。 参考書には少し難しいけど考えてみてとだけあって解説がなかったので。 BA:BC=DA:DCなどから CD=ab/(c+a) AE=bc/(a+b) AD=bc/(c+a) BE=ca/(a+b) 後半の条件からBDとCEの交点をIとしたとき (a+b)IB=(c+a)IC BD=CE={(a+b+c)/(a+b)}IC までわかったのですがb=cをどうしても示せませんでした。 (AB=c,BC=a,CA=b)

その他の回答 (1)

  • 回答No.2

回答はNo1の方の通りです。(2)の結論は有名な定理なので、覚えておきましょう。この定理を導くための問題です。補助線を引くのはこの定理を証明するにataってのヒントになっているのです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

有難う御座います。 よく覚えておきます。

関連するQ&A

  • 証明問題

    ACを斜辺とする直角三角形ABCについて、次のことを証明せよ。 (http://cult.jp/linne/study.html) 1)∠Bの二等分線と辺ACとの交点をD、△ABCの外接円との交点をEとすると、BD・BE=AB・BC 2)BD・BE=2△ABC 1)分からないんですが、私的に分かったことは、 ・△ABD∽△DEC ・方べきの定理よりDA・DC=DB・DE ・BC:BA=CD:DA ということです。コレだけで解けるでしょうか?? 2)コレは何をどうすれば証明できるのか分かりません。 何から始めればいいのかも分かりません;

  • 中3の相似の問題教えてください!

    中3の相似の証明教えてください! 右の図の△ABCはAB=AC,AB:BC=2:1の二等辺三角形である。辺BC上にBD:DC=1:2となる点Dをとり、辺AC上に∠ADE=∠ABCとなる点Eをとる。 (1)△ABD∽△DCEを証明しなさい。 (2)AE:ECを求めなさい。 (3)二等辺三角形ABCの面積が54平方cmであるとき、△ADEの面積を求めなさい。 この問題です。分かるやつだけでもいいので教えてください!! 画像横になっていたらすみません;;

  • 平面図形

    △ABCにおいて、∠Aおよびその外角の二等分線と直線BCの交点をそれぞれD,Eとするとき、 1/BD+1/BE=2/BC が成り立つことを証明せよ。 という問題で、解説に(二等分線の性質による、辺の比は既知として)BD=AB/AB+AC×BC,BE=AB/AB-AC×BC と書いてあったのですが、全く理解できません、教えてきいただけないでしょうか?

  • 図形

    △ABCにおいて、AB≠ACであるとする。∠Aの外角の二等分線と直線BCの交点をDとするとき、BD:CD=AB:ACであることを証明しなさい。これを「外角の二等分線の定理」といいます。 図形の証明は苦手なのでみなさんの力をお貸しください。 詳しく説明してくれるとありがたいです

  • 数Iの問題

    △ABCにおいて AB=3 , AC=8 , ∠BAC=60°である。 ∠BACの二等分線と辺BCとの交点をD, ∠ABCの外角の二等分線と直線ADとの交点をEとすると BD:DC=AB:(オ) AE:ED=AB:(カ) である。 答えは オ→AC カ→BD どうしてそうなるのかわからないので 解説をお願いします。

  • 図形と計量

    △ABCにおいて、∠Aの二等分線と辺BCの交点をDとする。 AB=c, AC=b, AD=dとおく。 ∠BADをθとするとき、cosθをc,b,dで表せ。 という問題です。 △ABDにおいて余弦定理を使いたいのですが、辺BDの長さが求められないので使えないです。 このやり方であっていますか? だとすると、辺BDの長さはどうして求めるのか教えてほしいですm(__)m ちなみに、この前の問題で… 角の二等分線と比により、BD:DC=c:b ということは、示しています。

  • 図形の証明問題です。

    どなたか回答おねがいします。 △ABCは鋭角三角形とする。∠ABCの二等分線と辺ACとの交点をDとし、Dから辺BCに垂線をひき、その交点をEとする。Eから辺ABに垂線をひき、BD,ABとの交点をそれぞれF,Gとする、このときED=EFであることを証明せよ です。おねがいします。

  • 中3図形

    図のように、AB=6cm、AC=10cm、∠ABCが直角の直角三角形ABCがあり、それぞれの辺に点P、Q、Rで接する円Oを描いた。また点Aから点Oを通る直線を引き、BCとの交点をDとし、点Dから∠ADEが垂直となるようにAC上に点Eをおいた。 四角形RODEの面積は、△EDCの面積の何倍かの求め方を教えてください。

  • 三角形と台形の問題

    △ABCの∠C, ∠Bの二等分線が辺AB, ACと交わる点を、それぞれ、D, Eとする。 DE//BCならば、AB=ACとなることを証明せよ。 教科書で 直線BEは∠Bの二等分線であるから BA:BC=AE:EC 直線CDは∠Cの二等分線であるから CA:CB=AD:DB DE//BCから AE:EC=AD:DB 以上から、BA:BC=CA:CB ←ここが解りません。 どうして上の3つの比の式から、上のような比の式ができるのでしょうか? AD//BCである台形ABCDにおいて、辺BC, DAを等しい比 m:n に内分する点を それぞれ P, Qとする。このとき、3直線AC, BD, PQ は1点で交わることを証明せよ。 ACとBDの交点をRとして、ACとPQの交点をR`とすると AR:RC=AD:BC AR`:R`C=AQ:PC AQ=AD*n/(m+n), PC=BC*n/(m+n)をAR`:R`C=AQ:PCの式に代入して AR`:R`C=AD*n/(m+n):BC*n/(m+n) とすると AR`:R`C=AD:BC ←こう変化するのがわかりません どうしてn/(m+n)は消えてしまったのでしょうか? またこういう問題を解くのは苦手なんですが、解く上での心構えなどないでしょうか? おねがいします。

  • チェバの定理

    こんばんは。 いつもお世話になっております。 よろしくお願いいたします。 AB:AC=2:1である△ABCにおいて、∠Aの二等分線と辺BCとの交点D、辺CAを1:2に内分する点をEとする。 ADとBEの交点をPとするとき、直線CPは辺ABの中点を通ることを証明せよ。という問題で質問があります。(図が表示できずすみません・・) なぜ、ADは∠Aの二等分線であるとBD/DC=AB/AC=2/1 になるのでしょうか。 なぜなるのかと、この式があらわしている意味がわかりません。。 いつも本当にすみません。 よろしくお願いいたします。