• ベストアンサー
  • すぐに回答を!

角の二等分線と比の定理の証明問題

数Aの角の二等分線と比の定理2の証明ができなくて困っています。 定理2である、「AB≠ACである△ABCの頂点Aにおける外角の二等分線と辺BCの延長との交点Qは、辺BCをAB:BCに外分する。」をAB>ACの場合について証明せよ。 という問題です。 △ABCと△BQAで「二つの角がそれぞれ等しい」という相似条件を使って証明すると思うのですが、どうしても等しい角が見つかりません。 補助線なども利用するのでしょうか? ご教授よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数1627
  • ありがとう数8

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

なにか紙を用意して、そこに図を書き、説明を書き込むと分かりやすいと思います。 ちなみに私の証明方法で、△ABCと△BQAで「二つの角がそれぞれ等しい」は使いません。 まず、点CからAQに平行な直線CEとおきます。 すると平行線の錯角より、∠CAQ=∠ECA--(1)であることがわかります。 また、ABの延長のさき(どこでもいいです)をMとします。 さらに、平行線の同位角より、∠CEA=∠QAM--(2)となります。 よって、(1)と(2)より、∠ECA=∠CEAつまり、三角形AECは二等辺三角形であることがわかりました。 よって、AE=CE ここで、CEとQAは平行なので、BA:AE=BQ:QC AE=CEを代入して、BA:CE=BQ:QC したがって、証明されたはずです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 定理「三角形の外角の二等分線と比」

    定理「AB≠ACである△ABCの∠Aの外角の二等分線と辺BCの延長線との交点は、辺BCをAB:ACに外分する」 の定理をAB>ACの場合で良いから証明しろ という基礎問題です。 一応先例に倣って、ADに平行且つ頂点Cを通る線ECを引き、「三角形の平行線と線分の比」を利用出来るようにし、 ∠AEC=∠ACEより、AE=AC、なので△AECは二等辺三角形 BC:CD=BE:EA BC:BD=BE:BA BC:BD=EC:AD が言えます。ですが、その先の証明に辿り着けません~ン。アドバイスだけでも良いので、ご協力お願いします!

  • 角の二等分線の定理(内角)の証明について・・・

    角の二等分線の定理(内角)の証明についての質問です。 <問題> ⊿ABCにおいて、∠BACの二等分線と線分BCとの交点をDとするとき、AB:AC=BD:DCが成り立つことを証明しなさい。 という問題で、証明が11種類あるらしいのですが、まったくわかりません・・・ わかるかたがいたら教えてください。

  • 三角形の角の三等分線の定理とは?

    三角形の角の二等分線の定理とは、 △ABCで角Aの二等分線を引き、辺BCとの交点をDとすると、 DB:DC=AB:AC というものですが、△ABCで角Aの三等分線を引くと、辺BCはどのような比に分けられるのでしょうか?

  • 二等分線定理の余弦定理による証明

     三角形ABCにおいて、角Aの二等分線を引き、BCとの交点をDとします。AB=a、AC=b、BD=c、CD=dとすると、a:b=c:dとなります。俗に二等分線定理と呼ばれるものですが、これを余弦定理によって証明する方法を教えていただけますでしょうか。  証明法は数ほどありますが、余弦定理を使ったやり方がわかりません。 

  • 定理の証明

    三角形ABCの角Aの二等分線と辺BCとの交点Pは辺BCをAB:ACに内分する という定理がありますが、 これを三角形の面積の公式を利用して証明する方法を教えてください。

  • 角の二等分線の問題

    △ABCの3辺の長さが与えられ、∠Aの二等分線とBCとの交点をDとするとき、 ADに平行で点C(外角の二等分線のとき)を通るような補助線(?)を引き、 平行であること、そして二等辺三角形を見つけてBD:DCの辺の比が求められますよね。 ですが、このとき、なぜこのような補助線を引くという発想ができるのかが不思議です。 確かに補助線を引くことで平行であることを利用して、いいように話は進んでいくのですが、 こんな発想は1人では思いつきません… むしろ教えてもらって初めて気づけます。 でも教えてもらわなくても、こういった補助線を引くときのコツみたいなものを教えてくれると嬉しいです。 回答宜しくお願いいたします。

  • 二等分線であることの証明

    △ABCの辺BC上の点Pについて、BP:PC=AB:ACが成り立つならばAPは∠Aの二等分線である。・・・(*) 四角形ABCDの2つの内角∠A、∠Cの二等分線の交点が、対角線BD上にあるならば、2つの内角∠B、∠Dの二等分線の交点も、対角線AC上にあることを、(*)を使って証明せよ。 (解答) ∠A、∠Cの二等分線の交点をE、∠Bの二等分線とACの交点をFとする。AE、CEはそれぞれ∠A、∠Cの二等分線であるから、△ABDにおいて BE:ED=AB:AD △BCDにおいてBE:ED=BC:CD よってAB:AD=BC:CDから AB・CD=AD・BC これから 【AB:BC=AD:CD】・・・(1) BFは∠Bの二等分線であるから、△ABCにおいて AF:CF=AB:BC・・・(2) (1)、(2)から AF:CF=AD:CD したがって、(*)からFDは∠Dの二等分線である。ゆえに、題意は示された。 質問は、【 】でくくった部分です。 なぜ、そのような式ができたのか理由を教えてください。 よろしくお願いします。

  • 図形

    △ABCにおいて、AB≠ACであるとする。∠Aの外角の二等分線と直線BCの交点をDとするとき、BD:CD=AB:ACであることを証明しなさい。これを「外角の二等分線の定理」といいます。 図形の証明は苦手なのでみなさんの力をお貸しください。 詳しく説明してくれるとありがたいです

  • 数学Aの問題

    数学Aの角と二等分線と比の利用の問題です。 AB=6、BC=5、CA=4である△ABCにおいて、∠Aおよび頂点Aにおける外角の二等分線が直線BCと交わる点を、それぞれD、Eとする。線分DEの長さを求めよ。 という問題で、解答が 定理1から BD:CE=AB:AC=6:4=3:2 よって2/3+2・BC=2/5・5=2 定理2からBE:CE=AB:AC=3:2よってCE=2/3-2・BC=2・5=10 とあるのですがCE=2/3-2・BCの式がよくわかりません。詳しく解説していただけるとありがたいです。

  • 平面図形

    △ABCにおいて、∠Aおよびその外角の二等分線と直線BCの交点をそれぞれD,Eとするとき、 1/BD+1/BE=2/BC が成り立つことを証明せよ。 という問題で、解説に(二等分線の性質による、辺の比は既知として)BD=AB/AB+AC×BC,BE=AB/AB-AC×BC と書いてあったのですが、全く理解できません、教えてきいただけないでしょうか?