- ベストアンサー
図形の証明問題です。
どなたか回答おねがいします。 △ABCは鋭角三角形とする。∠ABCの二等分線と辺ACとの交点をDとし、Dから辺BCに垂線をひき、その交点をEとする。Eから辺ABに垂線をひき、BD,ABとの交点をそれぞれF,Gとする、このときED=EFであることを証明せよ です。おねがいします。
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
関連するQ&A
- 二等分線であることの証明
△ABCの辺BC上の点Pについて、BP:PC=AB:ACが成り立つならばAPは∠Aの二等分線である。・・・(*) 四角形ABCDの2つの内角∠A、∠Cの二等分線の交点が、対角線BD上にあるならば、2つの内角∠B、∠Dの二等分線の交点も、対角線AC上にあることを、(*)を使って証明せよ。 (解答) ∠A、∠Cの二等分線の交点をE、∠Bの二等分線とACの交点をFとする。AE、CEはそれぞれ∠A、∠Cの二等分線であるから、△ABDにおいて BE:ED=AB:AD △BCDにおいてBE:ED=BC:CD よってAB:AD=BC:CDから AB・CD=AD・BC これから 【AB:BC=AD:CD】・・・(1) BFは∠Bの二等分線であるから、△ABCにおいて AF:CF=AB:BC・・・(2) (1)、(2)から AF:CF=AD:CD したがって、(*)からFDは∠Dの二等分線である。ゆえに、題意は示された。 質問は、【 】でくくった部分です。 なぜ、そのような式ができたのか理由を教えてください。 よろしくお願いします。
- ベストアンサー
- 数学・算数
- 数学の証明問題について
数学の証明の問題がわからないので質問させていただきます。 この問題の答えとできたら解き方も教えていただきたいです。 1.正三角形ABCの辺ACの中点をDとし、辺BCのCを超えた延長上に点EをCD=CEであるようにとれば、DB=DEである。 2.二等辺三角形ABCにおいてAB=ACとする。辺AC上の点をD、辺BCのCを超えた延長上に点EをCD=CEであるようにとったとき、DB=DEとなるのは、Dがどんな点の場合か。 3.問題2から次の問題を得る。△ABCにおいて、AB=ACとし、∠Bの二等分線とACとの交点をDとする。BCのCの超えた延長上に点Eを、CD=CEであるようにとればDB=DEである。 4.△ABCにおいてAB=ACとし、辺ACの中点をDとする。辺BCのCを超えた延長上の点をEとしたとき、DB=DEとなるのは、Eがどんな点の場合か。 5.問題4から次の問題を得る。△ABCにおいてAB=ACとし、辺ACの中点をDとする。辺BCのCを超えた延長上に点EをCE=1/2BCにとればDB=DEである。 6.直角二等辺三角形ABCにおいて∠A=90°とし、∠Bの二等分線とACとの交点をDとする。CからBDへの垂線の足をEとすれば、BD=2CEである。 以上、6個の問題です。 回答よろしくお願いしますm(_ _)m
- 締切済み
- 数学・算数
- 数学Aについての平面図形の問題です。至急よろしくお願いします。
問.AB=16、BC=14、AC=12である三角形ABCにおいて、 角Aの二等分線と辺BCとの交点をDとする。DCの長さを求めよ。 この問題について説明しなければならないので、二つ質問させていただきます。 (1)まず、BD:DC=AB:ACがわかります。 何故このようになるのかは、定理の「ADが角Aの二等分線で、点Dが辺BCをAB:ACに内分するから」という説明で正しいですか? (2)DCの長さは、比から DC=3/7BC =3/7×14 =6 ですが、何故3/7BCで求まるのですか? 説明は「BD:DCが4:3だから」ではダメですか? どうか今日中によろしくお願いいたします。
- ベストアンサー
- 数学・算数
お礼
ありがとうございます 中学レベルなので定理や公理などは使ってもかまわないですよ。 感謝しています!ありがとうございます!