- ベストアンサー
- 困ってます
証明問題
ACを斜辺とする直角三角形ABCについて、次のことを証明せよ。 (http://cult.jp/linne/study.html) 1)∠Bの二等分線と辺ACとの交点をD、△ABCの外接円との交点をEとすると、BD・BE=AB・BC 2)BD・BE=2△ABC 1)分からないんですが、私的に分かったことは、 ・△ABD∽△DEC ・方べきの定理よりDA・DC=DB・DE ・BC:BA=CD:DA ということです。コレだけで解けるでしょうか?? 2)コレは何をどうすれば証明できるのか分かりません。 何から始めればいいのかも分かりません;
- today2006
- お礼率29% (32/108)
- 数学・算数
- 回答数2
- ありがとう数0
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.2
- marchmarch
- ベストアンサー率28% (2/7)
1)∠ABC=90°の二等分線だから∠ABD=∠EBC=45° 弧BCの円周角より∠BAD=∠BEC 以上より△ABD∽△EBC よってAB:BD=BE:BC これを変形して BD・BE=AB・BC 2)は1)で証明した内容からBD・BE=AB・BC …(1) △ABC=AB・BC/2だから AB・BC=2△ABC …(2) (1)、(2)よりBD・BE=2△ABC
その他の回答 (1)
- 回答No.1
- Quattro99
- ベストアンサー率32% (1034/3212)
1) △ABEと△DBCに注目してみてください。 2) △ABCの面積は(AB・BC)/2ですから、AB・BC=2△ABCです。
関連するQ&A
- 数学I 三角比の問題
基本的な問題ばかりですが回答が手元になくて困っています。多いですがよろしくお願い致します。 1.△ABCの外接円をOとする。円Oの点Aでの接線をlとし、l上の点DをBDとACが平行になるようにとる。さらに AB=3 , AC=4 , AD=15/4とする。 (1)△ABCと△BDAが相似になることを示せ。 (2)BCを求めよ。 (3)円Oの半径を求めよ 2.四角形ABCDは∠D=120°, AB=BC=CA=3を満たす。対角線AC,BDの交点をPとする。 (1)この四角形は円に内接することを示せ。 (2)∠ADBを求めよ。 (3)PB:PD=2のとき、PAを求めよ。 3.△ABCでABの中点をD、ACの中点をEとし、BEとCDの交点をGとする。次のことを証明せよ。 (1)△ABCと△ADEは相似 (2)△DEGと△CBGは相似 (3)BG:GE=2:1 4.△ABCでAB上に点Dがあり、AD=AC=BC=1 , BD=CDとする。 (1)△ABCと△BCDが相似なことを証明せよ。 (2) x = BDを求めよ。 5.△ABCで∠Aの二等分線とBCの交点をDとする。また、Cを通るABに平行な直線と∠Aの二等分線との交点をEとする。 (1)△ABDと△ECDが相似なことを証明せよ。 (2)AB:BD=AC:CDを証明せよ。
- ベストアンサー
- 数学・算数
- 二等分線であることの証明
△ABCの辺BC上の点Pについて、BP:PC=AB:ACが成り立つならばAPは∠Aの二等分線である。・・・(*) 四角形ABCDの2つの内角∠A、∠Cの二等分線の交点が、対角線BD上にあるならば、2つの内角∠B、∠Dの二等分線の交点も、対角線AC上にあることを、(*)を使って証明せよ。 (解答) ∠A、∠Cの二等分線の交点をE、∠Bの二等分線とACの交点をFとする。AE、CEはそれぞれ∠A、∠Cの二等分線であるから、△ABDにおいて BE:ED=AB:AD △BCDにおいてBE:ED=BC:CD よってAB:AD=BC:CDから AB・CD=AD・BC これから 【AB:BC=AD:CD】・・・(1) BFは∠Bの二等分線であるから、△ABCにおいて AF:CF=AB:BC・・・(2) (1)、(2)から AF:CF=AD:CD したがって、(*)からFDは∠Dの二等分線である。ゆえに、題意は示された。 質問は、【 】でくくった部分です。 なぜ、そのような式ができたのか理由を教えてください。 よろしくお願いします。
- ベストアンサー
- 数学・算数
- 図形の証明問題です。
どなたか回答おねがいします。 △ABCは鋭角三角形とする。∠ABCの二等分線と辺ACとの交点をDとし、Dから辺BCに垂線をひき、その交点をEとする。Eから辺ABに垂線をひき、BD,ABとの交点をそれぞれF,Gとする、このときED=EFであることを証明せよ です。おねがいします。
- ベストアンサー
- 数学・算数
- 数学I 三角比の図形(正弦・余弦定理)の問題
基本的な問題ばかりですが解いてみたものの回答が手元になくて困っています。多いですがよろしくお願い致します。 1.△ABCでAB=4 , AC=5 , BC=2とする。 (1)cosAを求めよ。 (2)△ABCの面積を求めよ。 (3)外接円の半径を求めよ。 2.△ABCで∠A=60°, AB=3 , AC=4とする。 (1)BCを求めよ。 (2)△ABCの外接円の半径を求めよ。 (3)△ABCの面積を求めよ。 3.△ABCでAB=5 , AC=6 , BC=√91とする。 (1)∠Aを求めよ。 (2)△ABCの外接円の半径を求めよ。 (3)△ABCの面積を求めよ。 4.△ABCでAB=7 , AC=5 , ∠A=60°とする。 (1)BCを求めよ。 (2)△ABCの外接円の半径を求めよ。 (3)△ABCの面積を求めよ。 5.△ABCでAB=2 , AC=4 , BC=3とする。また∠Aの二等分線とBCの交点をDとする。 (1)BDを求めよ。 (2)cos∠Bを求めよ。 (3)ADを求めよ。
- ベストアンサー
- 数学・算数
- 図形と計算 解けません(´・ω・`)
問)AB=2,BC=6,CA=7,の△ABCがある。 ∠BACの二等分線と辺BCの交点をD, △ABDの外接円と辺CAのAと異なる交点をEとする。 このときBDとAEを求めよ。 ある大学の過去問なんですが 分からないのでよかったら 解き方を教えて下さい。 お願いします(´・ω・`)
- ベストアンサー
- 数学・算数