- ベストアンサー
- 困ってます
内心の求め方
三角形ABCのAB=3 BC=5 CA=7 ∠ABCの二等分線とACとの交点をDとすると AD:DC=3:5 ∠BCAの二等分線とBDとの交点をEとすると DE:ED=5:5 にするとおかしいのはどういうことでしょうか?

- 数学・算数
- 回答数2
- ありがとう数2
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1

DE:ED=5:5 DEとEDは同じ辺を指しているところ。 AB:BA=3:3 当然だよね?同じ辺だから。 因みに AB:BA=1:1 でも当然OK。(w
その他の回答 (1)
関連するQ&A
- 二等分線であることの証明
△ABCの辺BC上の点Pについて、BP:PC=AB:ACが成り立つならばAPは∠Aの二等分線である。・・・(*) 四角形ABCDの2つの内角∠A、∠Cの二等分線の交点が、対角線BD上にあるならば、2つの内角∠B、∠Dの二等分線の交点も、対角線AC上にあることを、(*)を使って証明せよ。 (解答) ∠A、∠Cの二等分線の交点をE、∠Bの二等分線とACの交点をFとする。AE、CEはそれぞれ∠A、∠Cの二等分線であるから、△ABDにおいて BE:ED=AB:AD △BCDにおいてBE:ED=BC:CD よってAB:AD=BC:CDから AB・CD=AD・BC これから 【AB:BC=AD:CD】・・・(1) BFは∠Bの二等分線であるから、△ABCにおいて AF:CF=AB:BC・・・(2) (1)、(2)から AF:CF=AD:CD したがって、(*)からFDは∠Dの二等分線である。ゆえに、題意は示された。 質問は、【 】でくくった部分です。 なぜ、そのような式ができたのか理由を教えてください。 よろしくお願いします。
- ベストアンサー
- 数学・算数
- 三角形 AB=5, AC=3, ∠A=120
円Oに内接する△ABCにおいて AB=5, AC=3, ∠A=120° ∠Aの二等分線がBC,円Oとの交点を それぞれD,Eとする。 ただしEはAと重ならない。 (1)BCの長さは 7 (2)DCの長さは 21/8 (3)ADの長さは 9/8 と15/8 (4)DEの長さを求めよ。 (1)(2)(3)は合っていますか? 間違っている場合は、考え方も含めて わかりやすく教えて頂けますか? (4)を分かりやすく教えて頂けますか? 宜しくお願いします。
- ベストアンサー
- 数学・算数
- 数学Aについての平面図形の問題です。至急よろしくお願いします。
問.AB=16、BC=14、AC=12である三角形ABCにおいて、 角Aの二等分線と辺BCとの交点をDとする。DCの長さを求めよ。 この問題について説明しなければならないので、二つ質問させていただきます。 (1)まず、BD:DC=AB:ACがわかります。 何故このようになるのかは、定理の「ADが角Aの二等分線で、点Dが辺BCをAB:ACに内分するから」という説明で正しいですか? (2)DCの長さは、比から DC=3/7BC =3/7×14 =6 ですが、何故3/7BCで求まるのですか? 説明は「BD:DCが4:3だから」ではダメですか? どうか今日中によろしくお願いいたします。
- ベストアンサー
- 数学・算数
- 三角形の性質の問題です
三角形の性質の問題です。△ABCはAB=ACで∠C=72°である。∠Bの二等分線とACとの交点をDとする。(1)△ABCと△BCDは相似であることを示せ。 (2)AD:DCを求めよ。(3)直線BC上の点EをBC=BEとなるようにとる。ただしEはCと異なる点である。DEとABの交点をFとするとき、AF:FBをもとめよ。(1)(2)はできたのですが、(3)がわかりません。ちなみに解答は(1+√5 :1です。どなたか教えてください。よろしくお願いします。
- ベストアンサー
- 数学・算数