• ベストアンサー
  • 困ってます

中二数学 図形 もう一問おねがいします。

△ABCで∠Bの二等分線と点Cにおける外角の二等分線の交点D。Dを通って辺BCに平行な直線と辺AB,ACの交点をE、Fとする。BE=6cm BC=7cmのとき、台形EBCFの周の長さを求めなさい。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数214
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

平行から錯角見つけて 三角形EBDは二等辺三角形→EB=BD 三角形FCDは二等辺三角形→FC=FD 辺EF+FC=EF+FC 四角形EBCEすべての辺の長さが分からなくてもいいのです。 答え 6+6+7=19cm

共感・感謝の気持ちを伝えよう!

質問者からのお礼

目からウロコでした。 すごいです。ありがとうございました。 また、よろしくお願いします。

関連するQ&A

  • この中学生の問題をお教えください。

    三角形ABCで角Bの二等分線と頂点Cにおける外角の二等分線との交点をDとする。また、Dを通りBCに平行な直線と、AB、ACとの交点をそれぞれE,Fとする。BE=6cm、BC=7cmのとき、台形EBCFの周の長さを求めなさい。

  • 中学の数学です

    △ABCにおいて、∠Aの二等分線と辺BCとの交点をD、∠Aの外角の二等分線と辺BCの延長線との交点をEとする。AB=8cm BC=7cm CA=6cmのとき、DEの長さを求めよ。 解説にBE:CE=AB:AC=4:3とあるのですが、その理由がわかりません! わかる方詳しい解説をお願いします。

  • 平面図形

    △ABCにおいて、∠Aおよびその外角の二等分線と直線BCの交点をそれぞれD,Eとするとき、 1/BD+1/BE=2/BC が成り立つことを証明せよ。 という問題で、解説に(二等分線の性質による、辺の比は既知として)BD=AB/AB+AC×BC,BE=AB/AB-AC×BC と書いてあったのですが、全く理解できません、教えてきいただけないでしょうか?

その他の回答 (2)

  • 回答No.3
noname#166245
noname#166245

No1さんが正解。 EBとDCは平行とは限りません。 ∠B=60°、∠C=90°の直角三角形で考えてみれば簡単です。 自分もはじめ図を書いたときには平行に見えて、 まずそれを証明しようとなんて考えてしまいましたが △ABCは適当に与えられているので、∠Cの外角の二等分が ∠Bに一致するなんていう保証はどこにもないことに気が付きました。 EDは7ではなく、6(=EB)なので、答えは19cmとなります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。

  • 回答No.2

まず、辺BCの延長線上の点をGとおきます。 辺ED と辺BC は平行なので、錯角の定義より、角FDC=角DCG よって、△FDC は二等辺三角形になる。 二等辺三角形の定義よりFC=FDなので、台形EFBCの長さは EF+FC+BC+BE=EF+FD+BC+BE=7+7+6=20 よって答えは20cm

共感・感謝の気持ちを伝えよう!

質問者からのお礼

考えてくださってありがとうございました。

関連するQ&A

  • 中2 数学 図形

    今日のテストでこのような問題がでました。 AB=10cm、BC=10cm、AC=12cmの△ABCがあります。 この三角形の∠Bの二等分線と∠Cの二等分線との交点を点Pとします。 また、点Pを通り辺BCと平行な線をひき、 辺ABとの交点をD、辺ACとの交点を点Eとします。 (1)△ADEの周の長さを求めなさい。 という問題です。 答えも解き方も全く分かりません。 回答お待ちしています。

  • 図形

    △ABCにおいて、AB≠ACであるとする。∠Aの外角の二等分線と直線BCの交点をDとするとき、BD:CD=AB:ACであることを証明しなさい。これを「外角の二等分線の定理」といいます。 図形の証明は苦手なのでみなさんの力をお貸しください。 詳しく説明してくれるとありがたいです

  • 中二数学 図形

    △ABCの∠Bの二等分線と点Cにおける外角の二等分線の交点Dのとき、∠BDCの大きさは? です。よろしくお願いします。

  • 数学の図形 解けないので解答お願いします

    △ABCで、∠B,∠Cの二等分線の交点をOとする。 Oを通り、辺BCに平行な直線と、 辺AB、AC、との交点をそれぞれD、Eとする。 AB=8cm、BC=10cm、CA=12cmのとき、 △ADEの3辺の長さの和を求めなさい。 よろしくお願いします。

  • 数学Aの平面図形(証明)

    数学Aの平面図形(証明) (1)三角形ABCにおいて、頂点Aにおける外角の二等分線上にAと異なる点Pをとると PB + PC > AB + AC 図は描けますが、証明の仕方が分かりません。 外角の二等分線が条件にあるので、使わなければいけないのだと思うのですが、どのように使うのかが分かりません。 (2)三角形ABCと三角形A'B'C'があって、3直線AA'、BB'、CC'が1点Xで交わるならば、直線BCとB'C'の交点P、CAとC'A'の交点Q、ABとA'B'の交点Rの3点P、Q、Rは一直線上にあることを示せ。 という問題です。 まず図形すら描けません。 どうやって証明するのでしょうか?

  • 数学です。

    △ABCにおいて,∠Aの外角の二等分線と辺BCの延長線との交点をQとするとき(AB>AC) AB:AC=BQ:CQが成り立つ.ことを図を用いて証明せよという問題はどのように証明すればよいか教えてください。

  • 中3 数学 図形

    AB=3cm、AC=2cmの△ABCがある。∠Aの外角の二等分線とBCの延長との交点をDとしAC∦EDとなるような点EをABの延長上にとる。CD=4cmであるとき、 (1)∠BACの二等分線とBCとの交点をFとするとき、BFの長さを求めなさい。 (2)△ABFと△ADEの面積比をもっとも簡単な整数の比であらわしなさい。 以上二問です。よろしくお願いします。

  • 相似の問題です

    ΔABCにおいて、∠Aの二等分線と辺BCの交点をD、∠Aの外角の二等分線と辺BCの延長線との交点をEとする。AB=8,BC=7、CA=6のとき、DEの長さをもとめよ。という問題なのですが、解答を見てみるとAB:AC=BE:CEとなっているのですが、理由がわかりません誰か教えてください。

  • この問題がわかりません

    「三角形ABCはAB=5,BC=10,AC=9である.∠Aの二等分線と∠Bの外角の二等分線の交点をPとする.辺BC上にAQ//BPとなるように点Qをとる.」 (1)AQの長さを求めよ (2)点Pから直線ABにおろした垂線の足をHとする.PHの長さを求めよ (1)はAPとBQの交点をRとすると,CR:BR=9:5,QR:BR=2:5などは考えたのですが出ません. ヒントだけお願いします.

  • 図形の問題

    AB=2、BC=√6、CA=3の三角形と円Oがある。 円Oは点Aを通り点Bで直線BCに接している。また、円Oは辺ACに対してA以外の交点Dを持つ さらに、∠Aの二等分線と辺BCの交点をEとする。 (1)三角形ABC∽三角形BDCを証明せよ (2)線分CDの長さを求めよ。またBE:ECを最も簡単な整数比で求めよ (3)線分AE,BDの交点をFとするとき、AF/FEを求めよ。また、三角形ABF、四角形CDFEの面積をそれぞれS,TとするときT/Sを求めよ さっぱりわかりません。どなたか回答よろしくお願いします。