• ベストアンサー
  • 困ってます

ベクトル

四角形ABCDにおいて、正の数a,bに対してBC↑=aAB↑+bAD↑が成り立っているとする。 対角線ACとBDの交点をEとする。 辺DC,BCの中点を,それぞれ点Q、Sとする。辺AB上の点Pと辺AD上の点RをAP↑=1/3AB↑,AR↑=1/6AD↑となるようにとる。 直線RS上に点Nをとり、RN↑=tRS↑となるように実数tを定める。 Nが直線PQと直線RSの交点であるときには t=(アa+イb+ウ)/(エオa+カキb+クケ) この問題だけわかりません。 途中の小問はわかったので必要だと思われる部分のみ抜き出しました。 必要ならば補足します。 回答お願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • gohtraw
  • ベストアンサー率54% (1630/2966)

ちゃんと解いてはいませんが、方針として(以下ベクトル記号は略します) PN、およびPQをABおよびADの式で表します。ここで PN=αAB+βAD PQ=γAB+δAD という形になったとすると、Nが直線PQと直線RSの交点であるとき点Nは直線PQ上にあるので α:β=γ:δ が成り立つはずです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。解けました^^

その他の回答 (1)

  • 回答No.1
  • alice_44
  • ベストアンサー率44% (2109/4758)

A を原点、AB↑ と AD↑ を基本ベクトルとして考えていることを意識する。 AC↑ = AB↑ + BC↑ から、AC↑ も ( )AB↑ + ( )AD↑ という形で書ける。 それを使って、AQ↑ と AS↑ も、同様に表すことができるし、 AQ↑ と AS↑ は、最初からその形で与えられている。(係数に 0 を持つ。) あとは、与えられた二点を通る直線のパラメータ表示を知っていれば、 直線 PQ と RS をそれぞれパラメータ表示することができて、交点 N は、 二直線の式を、両パラメータの連立一次方程式として解くと、求められる。 直線のパラメータ表示を知らなければ、教科書で「線分の内分点」について 調べてみる必要がある。 RS をパラメータ表示するとき、問題の t をパラメータに採用しておくと、 後々の処理が自然になる。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうござます^^

関連するQ&A

  • ベクトル

    四角形ABCDにおいて、正の数a,bに対してBC↑=aAB↑+bAD↑が成り立っているとする。 対角線ACとBDの交点をEとする。 辺DC,BCの中点を,それぞれ点Q、Sとする。辺AB上の点Pと辺AD上の点RをAP↑=1/3AB↑,AR↑=1/6AD↑となるようにとる。 直線RS上に点Nをとり、RN↑=tRS↑となるように実数tを定める。 Nが直線PQと直線RSの交点であるときには t=(アa+イb+ウ)/(エオa+カキb+クケ) PN=αAB+βAD PQ=γAB+δAD という形になったとすると、Nが直線PQと直線RSの交点であるとき点Nは直線PQ上にあるので α:β=γ:δ が成り立つ これを使って説くことができたのですがなぜこの比が成り立つのかわかりません… 回答お願いします

  • 数学のベクトルの問題ですが…

    平行四辺形ABCDにおいて、辺BCの中点をLとし、線分DLを2:3に内分する点をMとする。また、直線AMと辺CDの交点をNとする。 (1)AM→をAB→、AD→で表せ 答えは、AM→=5/2AB→+5/4AD→ 解き方がわからないので解き方を詳しく教えてください

  • ベクトル

    Aは0<a<1を満たす数とする。辺AB、ACの長さが等しい二等辺三角形ABCに対し、辺ABを1:5に内分する点をP、辺ACをa:(1-a)にAは0<a<1を満たす数とする。辺AB、ACの長さが等しい二等辺三角形ABCに対し、辺ABを1:5 に内分する点をP、辺ACをa:(1-a)に内分する点をQとする。また、線分BQと線分CPの交点をKとし、直線AKと辺BCの交 点をRとする。 1 →BQ、→CP、→AK、→ARを、→AB、→ACで表すと、それぞれ →BQ=-→AB+a→AC、 →CP=1/6→AB-→AC →AK=(ア-a)/(イ-ウ)→AB +エオ /(カ-キ)→AC →AK=(1-s)→AB+s→AQ=(1-s)→AB+as→AC →AK=t→AP+(1-t)AC=1/6t→AB+(1-t)→AC としてあとは連立して解いたのですが答えが回答欄にあいません。 ミスの指摘お願いします。

  • ベクトルについて

    閲覧ありがとうございます。 三角形ABCは、AB=2、AB=4、CA=3を満たす。∢BACの二等分線と辺BCの交点をDとし、直線AD上にAB⊥CHとなる点Hをとる。→AB=→b、→AC=→cとおく。 (1)内積→b・→c・・・-3/2 (2)→ADを→b、→cを用いて表せ。・・・3→b+2→c/5 (3)→AHを→b、→cを用いて表せ。 (3)がわかりません。(1)と(2)の左は答えです。 (3)の解答と別解がほかにありましたらお願い致します。

  • 数学B 平面ベクトル

    平行四辺形ABCDがあり、辺BCの中点をE、辺CDを3:2に内分する点をFとし、線分AFとDEの交点をGとする。また、ABベクトル=aベクトル、ADベクトル=bベクトルとする。 (1)AEベクトル、AFベクトルをaベクトルとbベクトルで表せ。 (2)AF:AG=1:s(0<s<1)、DE:GE=t:(t-1)(0<t<1)とするとき、s、tの値をもとめよ。 (3)AB=3、AD=6とし、辺AB上に点HをAHベクトル=8/9ABベクトルとなるようにとる。 ∠AHG=90度のとき、内積a・bの値を求めよ。さらに、点Gから直線ADに垂線GHを引く。AIベクトルを、bベクトルを用いて表せ。 問題の解答がなくて、困っています。回答を教えていただけるとありがたいです。 どうか、よろしくお願いします。

  • ベクトル問題!!

    平行四辺形ABCDがある。辺BCを1:2に内分する点をP、辺CDを(1-t):tに内分する点をQとし、線分PQと対角線ACとの交点をRとする。「AB」(ABベクトル)=「a」 「AD」=「b」とおくとき、  「a」、「b]およびtを用いて「PQ」を表すと 「PQ」=(t-□)「a」+□/□「b」である。  という問題なんですが、「PQ」=「AQ」-「AP」となるのは分かるのですが、その計算が答えとどうしても合いません。 ちなみに答えは(t-1)「a」+2/3「b」です。

  • ベクトルの問題です。教えてください!

    三角形ABCにおいてAP=2/5AB+1/5ACとなる点Pをとる。 直線APと辺BCとの交点をQとする。直線BPと辺ACとの交点D、 直線CPと辺ABとの交点をEとし、直線DEと直線BCとの交点をKとし AKをABとACで表せ。 ベクトルは省略します。 解き方が分かりません。 詳しく解説していただけると嬉しいです。

  • ベクトル

    △ABCにおいて、AB=2、BC=4、CA=3である。AB↑=a↑、AC↑=b↑とおく (1)∠Aの2等分線と辺BCの交点をDとするとき、AD↑をa↑、b↑で表しなさい (2)△ABCの内接円の中心をOとするとき、A0↑をa↑、b↑で表しなさい (1)はわかったのですが、(2)がわかりません。どなたか教えてください

  • ベクトルの問題がこの結果になるのはどうしてでしょう

    三角形ABCにおいて, AC=b AB=c とし、BCの中点をM, 角BACの二等分線と辺BCの交点をDとする。 また直線ADに点Bからおろした垂線の足をEとし、直線AMと直線BEの交点をFとする。 この時, ベクトルOF, ベクトルDFをベクトルAB, ベクトルACを用いて表せ。 という問題で、解くには解けたのですが、その結果として、直線ACと直線BFの交点をGとすると (1)BD:DC=c:b, MがBCの中点だったのが、AD、AMの延長線とAGの交点では BF:FG=b:c, EがBG中点と対応が逆転しました。また最終的に (2)AB//DFとなります。 このような結果になるのはなぜでしょうか?こうなる理由があると思うのですがいまいちつかみきれません。 よろしくお願いします!

  • ベクトル計算問題の疑問です。

    ベクトル計算問題の疑問です。 こんにちは。今日もよろしくお願いします_(._.)_ 平行四辺形ABCDの辺ABを2:3に内分する点をE、直線BDとECの交点をP、直線APと辺BCの交点をQとする。 AB(→)=a(→) AD(→)=b(→)とするとき、AP(→)をa(→),b(→)で表せ という問題で、解答を見ると、 点Pが直線BD上にあるから、BP:PD=s:1-s と、おくと、 AP(→)=(1-s)AB+sAD(→) =(1-s)a(→)+sb(→) 以下略・・・ となっていました。 ABとPDって別物なのに、どうして1-sという比が使えるのかがわかりません。 APを、AB+BP=AB+BP/BD・・・ と考えていこうとおもったのですが、わからなくなっちゃって。 教えてください。