• ベストアンサー
  • 困ってます

ベクトル

四角形ABCDにおいて、正の数a,bに対してBC↑=aAB↑+bAD↑が成り立っているとする。 対角線ACとBDの交点をEとする。 辺DC,BCの中点を,それぞれ点Q、Sとする。辺AB上の点Pと辺AD上の点RをAP↑=1/3AB↑,AR↑=1/6AD↑となるようにとる。 直線RS上に点Nをとり、RN↑=tRS↑となるように実数tを定める。 Nが直線PQと直線RSの交点であるときには t=(アa+イb+ウ)/(エオa+カキb+クケ) PN=αAB+βAD PQ=γAB+δAD という形になったとすると、Nが直線PQと直線RSの交点であるとき点Nは直線PQ上にあるので α:β=γ:δ が成り立つ これを使って説くことができたのですがなぜこの比が成り立つのかわかりません… 回答お願いします

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • alice_44
  • ベストアンサー率44% (2109/4758)

α AB↑ + β AD↑ = PN↑ = u PQ↑ = uγ AB↑ + uδ AD↑ と置けるからです。 RN↑ = t RS↑ と同じでしょう? α = uγ, β = uδ から u を消去すると、α:β = γ:δ ですよね。 無理に比例式にしなくても、t, u の連立方程式でもよいのでは? この質問は、別質問を立てるよりも、補足質問にしたほうがよかったような気がします。 http://okwave.jp/qa/q6945267.html

共感・感謝の気持ちを伝えよう!

質問者からのお礼

理解できました。 回答ありがとうございました。 今日はじめて質問したのでまだなれなくて… 気をつけますね~

その他の回答 (1)

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

α:γ = β:δ ならわかりますか?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

理解できました。 ありがとうございました。

関連するQ&A

  • ベクトル

    四角形ABCDにおいて、正の数a,bに対してBC↑=aAB↑+bAD↑が成り立っているとする。 対角線ACとBDの交点をEとする。 辺DC,BCの中点を,それぞれ点Q、Sとする。辺AB上の点Pと辺AD上の点RをAP↑=1/3AB↑,AR↑=1/6AD↑となるようにとる。 直線RS上に点Nをとり、RN↑=tRS↑となるように実数tを定める。 Nが直線PQと直線RSの交点であるときには t=(アa+イb+ウ)/(エオa+カキb+クケ) この問題だけわかりません。 途中の小問はわかったので必要だと思われる部分のみ抜き出しました。 必要ならば補足します。 回答お願いします。

  • ベクトル問題!!

    平行四辺形ABCDがある。辺BCを1:2に内分する点をP、辺CDを(1-t):tに内分する点をQとし、線分PQと対角線ACとの交点をRとする。「AB」(ABベクトル)=「a」 「AD」=「b」とおくとき、  「a」、「b]およびtを用いて「PQ」を表すと 「PQ」=(t-□)「a」+□/□「b」である。  という問題なんですが、「PQ」=「AQ」-「AP」となるのは分かるのですが、その計算が答えとどうしても合いません。 ちなみに答えは(t-1)「a」+2/3「b」です。

  • ベクトルの問題です。教えてください!

    三角形ABCにおいてAP=2/5AB+1/5ACとなる点Pをとる。 直線APと辺BCとの交点をQとする。直線BPと辺ACとの交点D、 直線CPと辺ABとの交点をEとし、直線DEと直線BCとの交点をKとし AKをABとACで表せ。 ベクトルは省略します。 解き方が分かりません。 詳しく解説していただけると嬉しいです。

  • ベクトルの問題がこの結果になるのはどうしてでしょう

    三角形ABCにおいて, AC=b AB=c とし、BCの中点をM, 角BACの二等分線と辺BCの交点をDとする。 また直線ADに点Bからおろした垂線の足をEとし、直線AMと直線BEの交点をFとする。 この時, ベクトルOF, ベクトルDFをベクトルAB, ベクトルACを用いて表せ。 という問題で、解くには解けたのですが、その結果として、直線ACと直線BFの交点をGとすると (1)BD:DC=c:b, MがBCの中点だったのが、AD、AMの延長線とAGの交点では BF:FG=b:c, EがBG中点と対応が逆転しました。また最終的に (2)AB//DFとなります。 このような結果になるのはなぜでしょうか?こうなる理由があると思うのですがいまいちつかみきれません。 よろしくお願いします!

  • ベクトル

    四面体OABCにおいて、辺OAの中心をP、辺BCを2:1に内分する点をQ、辺OCを1:3に内分する点をR、辺ABをs:(1-s)に内分する点をSとする。ただし、0<s<1とする。 (1)PQをa、bおよびcで表せ。 (2)RSをa、b、cおよびsで表せ。 (3)線分PQと線分RSが交わるときのsの値を求めよ。

  • ベクトル

    △ABCにおいて,辺ABの中点をP,辺ACを2:1に内分する点をQとする。 直線PQとBCの交点をRとするとき,AR→をAB→,AC→で表せ。また,BR:RCを求めよ。 ヒントに、共通条件AR→=(1-t)AB→+tAC→,AR→=(1-s)AP→+sAQ→ を使う,と書いてあったのですが,なぜ,係数がこのような関係になってるのでしょうか?また,どうこの問題に帰着させればよいのでしょうか?

  • ベクトルについて

    閲覧ありがとうございます。 三角形ABCは、AB=2、AB=4、CA=3を満たす。∢BACの二等分線と辺BCの交点をDとし、直線AD上にAB⊥CHとなる点Hをとる。→AB=→b、→AC=→cとおく。 (1)内積→b・→c・・・-3/2 (2)→ADを→b、→cを用いて表せ。・・・3→b+2→c/5 (3)→AHを→b、→cを用いて表せ。 (3)がわかりません。(1)と(2)の左は答えです。 (3)の解答と別解がほかにありましたらお願い致します。

  • ベクトルの問題です。

    三角形ABCの辺BCを1:2に内分する点をD、辺ABを1:2に内分する点をE、ADとCEの交点をPとする。 (1)ベクトルAPをベクトルABとベクトルACで表すと、 ベクトルAP=□分の□ベクトルAB+□分の□ベクトルAC と表せる。 □の部分に数字が入ります。 (2)BPとCAの交点をQとするとき、CQ:QAとBP:PQを求めよ。 答えだけでいいです。

  • ベクトル問題

    続けて投稿申し訳ありません。質問させていただきます。 ベクトルの問題で、 aは0<a<1 をみたすかずとする。辺AB,ACの長さが等しい二等辺三角形ABCに対して辺ABを1:5に内分する点をP 辺ACをa:1-aに内分する点をQとする。また、線分BQと線分CPの交点をKとし、直線AKと辺BCの交点をRとする。 (1)ベクトルAK、ARをベクトルAB,ACであらわせ という問題で、 (以下のABなどの表記はベクトルABを意味するとする) AR=(1-a)AB/(4a +1) + (5a)AC/(4a+ 1) メネラウスで KA/RK=(4a +1)/(5-5a)まででました。 しかし解説では次に KA=(4a +1)AR/(5-5a+4a+1) と、RKがいきなりARに、そして分母にいきなり4a+1がたされています。この部分が不可解なのでアドバイスを求めています。 どうぞよろしくお願いします。

  • ベクトル、外接円、垂心

    鋭角三角形ABCの外接円の中心をO、辺BCの中点をM、頂点Aから辺BCに下ろした垂線の足をD、 頂点Bから辺ACに下ろした垂線の足をEとし、直線AD、BEの交点をHとし、 (→)OA=(→)a、(→)OB=(→)b、(→)OC=(→)cとする。 (ベクトルABを(→)ABと表記することにします) (1) (→)OHを(→)a、(→)b、(→)cをを用いて表せ (2) 円Oの周上の点Pに対し、Qは   (→)OQ=1/2{(→)OA+(→)OB+(→)OC}-1/2(→)OPをみたすとき  (i)点Pが外心Oに関するAの対称点A'のとき、Qが線分AHの中点であることを示せ  (ii)点Pが円Oの円周上を動くとき、点Qの軌跡を求めよ 始めから詰まってしまいました。 (→)AD=s(→)AB+(1-s)(→)ACとおくと (→)AD=s{(→)b-(→)a}+(1-s){(→)c-(→)a} =-(→)a+s(→)b+(1-s)(→)c また(→)AD//(→)OMより (→)AD=(1/2)t{(→)b+(→)c}で係数比較と思ったのですが あれ?・・・(→)aは・・・(;´Д`) 出来れば(2)のほうもよろしくお願いします