• 締切済み
  • すぐに回答を!

数学 平面ベクトル 解き方を教えてください

(1)△ABCにおいて辺BCを2:1に外分する点をP、辺ABを1:3に内分する点をQ 辺CAを3:2に内分する点をRとする。 AB=b AC=cとおいて次のベクトルをb、cを用いて表せ。 (1)AQ、AR、AP、PQ、PR (2)3点P,Q,Rは一直線上にあることを示せ。 (3)QR:RPを求めよ (2)△ABCにおいて、AB=b AC=cとおく。辺ABを1:2に内分する点をD、辺ACを2:3に内分する点をEとする。また2つの線分CDとBEの交点をPとし、直線APと辺BCの交点をQとする。 (1)BP:PE=s:(1-s)とするときAPをs、b、cを用いて表せ。またCP:PD=t:(1-t)とするとき、APをt、b、cを用いて表せ。 (2)APをb、cを用いて表せ (3)AQをb、cを用いて表せ 類似したような問題を参考にして解いてみたのですができませんでした。 解法の手順も教えてもらえるとありがたいです。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数438
  • ありがとう数1

みんなの回答

  • 回答No.1
  • info22
  • ベストアンサー率55% (2225/4034)

同類の問題を2問丸投げされています。このタイプの質問は削除対象になりますので解答が付きません。丸投げ質問に回答することも禁止されていますので解答を回答しても削除されてしまいます。 1問に減らし、あなたの解答を書いて、分からない箇所だけを質問した方が良いでしょう。そうすれば削除対象にならず回答をしてもらえるでしょう。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

すみませんでした 注意事項をよく読んでいませんでした 今度から気をつけます。

関連するQ&A

  • ベクトル問題!!

    平行四辺形ABCDがある。辺BCを1:2に内分する点をP、辺CDを(1-t):tに内分する点をQとし、線分PQと対角線ACとの交点をRとする。「AB」(ABベクトル)=「a」 「AD」=「b」とおくとき、  「a」、「b]およびtを用いて「PQ」を表すと 「PQ」=(t-□)「a」+□/□「b」である。  という問題なんですが、「PQ」=「AQ」-「AP」となるのは分かるのですが、その計算が答えとどうしても合いません。 ちなみに答えは(t-1)「a」+2/3「b」です。

  • 平面ベクトルの解き方

    (1)△ABCにおいて辺BCを2:1に外分する点をP、辺ABを1:3に内分する点をQ 辺CAを3:2に内分する点をRとする。 AB=b AC=cとおいて次のベクトルをb、cを用いて表せ。 (2)3点P,Q,Rは一直線上にあることを示せ。 すみません質問は1つまででしたか しかしどうしても分かりません。 どうしめせばいいのでしょうか

  • ベクトルの問題です。

    三角形ABCの辺BCを1:2に内分する点をD、辺ABを1:2に内分する点をE、ADとCEの交点をPとする。 (1)ベクトルAPをベクトルABとベクトルACで表すと、 ベクトルAP=□分の□ベクトルAB+□分の□ベクトルAC と表せる。 □の部分に数字が入ります。 (2)BPとCAの交点をQとするとき、CQ:QAとBP:PQを求めよ。 答えだけでいいです。

  • ベクトルの問題

    AD//BC、BC=2ADである四角形ABCDがある。点P,Qが ↑PA+2↑PB+3↑PC=↑QA+↑QC+↑QD=↑0 を満たすとき、 (1)ABとPQが平行であることを示せ。 (2)3点P,Q,Dが一直線上にあることを示せ。 (1) AD//BC,BC=2ADから ↑BC=2↑AD=2↑AD ↑AC-↑AB=2↑AD ↑AC=↑AB+2↑AD・・・(1) さらに↑PA+2↑PB+3↑PC=↑0から、 (↑AA-↑AP)+2(↑AB-↑AP)+3(↑AC-↑AP)=↑0 6↑AP=2↑AB+3↑AC (1)を代入すると 6↑AP=2↑AB+3(↑AB+2↑AD) =5↑AB+6↑AD ↑AP=(5/6)↑AB+↑AD・・・(2) また、↑QA+↑QC+↑QD=↑0から (↑AA-↑AQ)+(↑AC-↑AQ)+(↑AD-↑AQ)=↑0 3↑AQ=↑AC+↑AD (1)を代入すると、 3↑AQ=(↑AB+2↑AD)+↑AD    =↑AB+3↑AD ↑AQ=(1/3)↑AB+↑AD・・・(3) ここで、↑PQ=↑AQ-↑AP を 計算すると(2)、(3)より、 ↑PQ={(1/3)↑AB+↑AD}-{(5/6)↑AB+↑AD} =(-1/2)↑AB・・・(4) ∴ ↑PQ=(-1/2)↑AB よって、ABとPQが平行である。 (2)3点P,Q,Dが一直線上にあることを示せ。 ↑PD=↑AD-↑AP (2)を代入して、 ↑PD=↑AD-{(5/6)↑AB+↑AD}   =(-5/6) ↑AB   =(5/3)↑PQ よって、3点P,Q,Dは一直線上にある こうやると教えてもらったんですけど、合っていますか? こういうタイプの問題はとりあえず基準点を定めて位置ベクトルに直せばいいんですか? それとも他にいいやり方があるんですかね?(x_x;)

  • 位置ベクトルの応用問題(数学Bより)

    (※以下PA、PBなどの英語はベクトルを表します   またy/xはx分のyとします) Q. △ABCと点Pに対して、等式2PA+3PB+PC=0 が成り立つ時、点Pはどのような位置にあるか。 A. 点Aに関する位置ベクトルを考えて、等式を変形すると -2AP+3(AB-AP)+(AP-AC)=0 整理して6AP=3AB+AC すなわちAP=2/3×3AB+AC/4=2/3×3AB+AC/1+3 よって、辺BCを1:3に内分する点をQとすると Pは線分AQを2:1に内分する点である。 この問題の意味がさっぱりわかりません; ちなみに僕は高校二年生です。 どなたか理解できるように解説をつけたしてくれませんか?

  • ベクトル

    △ABCにおいて,辺ABの中点をP,辺ACを2:1に内分する点をQとする。 直線PQとBCの交点をRとするとき,AR→をAB→,AC→で表せ。また,BR:RCを求めよ。 ヒントに、共通条件AR→=(1-t)AB→+tAC→,AR→=(1-s)AP→+sAQ→ を使う,と書いてあったのですが,なぜ,係数がこのような関係になってるのでしょうか?また,どうこの問題に帰着させればよいのでしょうか?

  • ベクトル

    Aは0<a<1を満たす数とする。辺AB、ACの長さが等しい二等辺三角形ABCに対し、辺ABを1:5に内分する点をP、辺ACをa:(1-a)にAは0<a<1を満たす数とする。辺AB、ACの長さが等しい二等辺三角形ABCに対し、辺ABを1:5 に内分する点をP、辺ACをa:(1-a)に内分する点をQとする。また、線分BQと線分CPの交点をKとし、直線AKと辺BCの交 点をRとする。 1 →BQ、→CP、→AK、→ARを、→AB、→ACで表すと、それぞれ →BQ=-→AB+a→AC、 →CP=1/6→AB-→AC →AK=(ア-a)/(イ-ウ)→AB +エオ /(カ-キ)→AC →AK=(1-s)→AB+s→AQ=(1-s)→AB+as→AC →AK=t→AP+(1-t)AC=1/6t→AB+(1-t)→AC としてあとは連立して解いたのですが答えが回答欄にあいません。 ミスの指摘お願いします。

  • 中学生 線分比のこと

    いま線分比の問題を解いています。 参考書に書いてある表現です。 「三角形ABCの2辺AB、AC上に、それぞれ点P、Qがあるとき、PQ平行BCならば AP/AB=AQ/AC=PQ/BC」 と書いてありますが、読み方がわかりません。 線分比が分数で書かれていると思うのですが。 「AB分のAP イコール AQ分のAC イコール PQ分のBC」と読むのか 「APたいAB イコール AQたいAC イコール PQたいBC」と読むのか、どちらですか?

  • 高校数学、ベクトル、三角形内部の点について

    三角形ABCの内部の点Pについて、 APを延長し、BCとの交点をQとしたとき、QがBCをm:nに内分する点とすると AP;AQは整数lを用いて AP;AQ=(m+n);(m+n+l) と表せるらしいのですが AP;PQに何故m+nが出てくるのかわかりません… お願いします。

  • ベクトルの問題です。

    △ABCの辺ABの中点をD、辺ACを2:3に内分する点をE、線分CDとBEの交点をPとする。 ベクトルAB=a、ベクトルB=bとしてベクトルAPをベクトルa、ベクトルbであらわしてください。