• ベストアンサー
  • 困ってます

ベクトル

Aは0<a<1を満たす数とする。辺AB、ACの長さが等しい二等辺三角形ABCに対し、辺ABを1:5に内分する点をP、辺ACをa:(1-a)にAは0<a<1を満たす数とする。辺AB、ACの長さが等しい二等辺三角形ABCに対し、辺ABを1:5 に内分する点をP、辺ACをa:(1-a)に内分する点をQとする。また、線分BQと線分CPの交点をKとし、直線AKと辺BCの交 点をRとする。 1 →BQ、→CP、→AK、→ARを、→AB、→ACで表すと、それぞれ →BQ=-→AB+a→AC、 →CP=1/6→AB-→AC →AK=(ア-a)/(イ-ウ)→AB +エオ /(カ-キ)→AC →AK=(1-s)→AB+s→AQ=(1-s)→AB+as→AC →AK=t→AP+(1-t)AC=1/6t→AB+(1-t)→AC としてあとは連立して解いたのですが答えが回答欄にあいません。 ミスの指摘お願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • nag0720
  • ベストアンサー率58% (1093/1860)

→AK=(1-s)→AB+s→AQ=(1-s)→AB+as→AC →AK=t→AP+(1-t)AC=1/6t→AB+(1-t)→AC とするところまでは合っています。 ミスがあるとしたらそのあとでしょう。 連立方程式を解いた過程も補足してください。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

無事解けました^^

関連するQ&A

  • ベクトル問題

    続けて投稿申し訳ありません。質問させていただきます。 ベクトルの問題で、 aは0<a<1 をみたすかずとする。辺AB,ACの長さが等しい二等辺三角形ABCに対して辺ABを1:5に内分する点をP 辺ACをa:1-aに内分する点をQとする。また、線分BQと線分CPの交点をKとし、直線AKと辺BCの交点をRとする。 (1)ベクトルAK、ARをベクトルAB,ACであらわせ という問題で、 (以下のABなどの表記はベクトルABを意味するとする) AR=(1-a)AB/(4a +1) + (5a)AC/(4a+ 1) メネラウスで KA/RK=(4a +1)/(5-5a)まででました。 しかし解説では次に KA=(4a +1)AR/(5-5a+4a+1) と、RKがいきなりARに、そして分母にいきなり4a+1がたされています。この部分が不可解なのでアドバイスを求めています。 どうぞよろしくお願いします。

  • ベクトルの応用がわかりません!

    数学Bの問題で、とき方が解らず困っています。 三角形ABCにおいて、辺ABを3:1に内分する点をP、辺ACを1:2に内分する点をQとし、線分BQを1:2に内分する点をRとする。三点P,R,Cは一直線上にあることを証明せよ。 という問題です。内分点の公式に当てはめると思うのですが、よくわかりません。お願いします。

  • 数学 平面ベクトル 解き方を教えてください

    (1)△ABCにおいて辺BCを2:1に外分する点をP、辺ABを1:3に内分する点をQ 辺CAを3:2に内分する点をRとする。 AB=b AC=cとおいて次のベクトルをb、cを用いて表せ。 (1)AQ、AR、AP、PQ、PR (2)3点P,Q,Rは一直線上にあることを示せ。 (3)QR:RPを求めよ (2)△ABCにおいて、AB=b AC=cとおく。辺ABを1:2に内分する点をD、辺ACを2:3に内分する点をEとする。また2つの線分CDとBEの交点をPとし、直線APと辺BCの交点をQとする。 (1)BP:PE=s:(1-s)とするときAPをs、b、cを用いて表せ。またCP:PD=t:(1-t)とするとき、APをt、b、cを用いて表せ。 (2)APをb、cを用いて表せ (3)AQをb、cを用いて表せ 類似したような問題を参考にして解いてみたのですができませんでした。 解法の手順も教えてもらえるとありがたいです。

  • 三角形のベクトルについて教えて下さい。

    △ABCにおいて、辺ABを2:1に内分する点をD、辺ACを3:1に内分する点をEとし 線分CD、BEの交点をPとする。 (1)APベクトルをABベクトル、ACベクトルを用いて表せ。 (2)AB=3、AC=4、AP=√7のとき、∠BACの大きさを求めよ。 この問題の解き方と解答を教えて下さい。   チェバ・メネラウスの定理などを使うらしいです

  • ベクトル

    △ABCにおいて、辺ABを3:1に内分する点をD、辺BCを2:3に内分する点をEとし、線分CDと線分AEの交点をFとする。ベクトルAB=ベクトルa、ベクトルAC=ベクトルbとして (1)線分DCをt:(1-t)に内分するとして、ベクトルAFをベクトルaとベクトルbを用いて表せ (2)3点A,F,Eが一直線上にあると考えて、ベクトルAFをベクトルaとベクトルbを用いて表せ (3)ベクトルAFをベクトルaとベクトルbを用いて表せ という問題があります (1)は ベクトルAF=(1-t)ベクトルAD+t×ベクトルAC       =(3/4)(1-t)ベクトルa+t×ベクトルb と解けたんですが 2と3が先に進めません どうやってすればいいでしょうか 高校の数Bの平面ベクトルのところです

  • ベクトルの問題(二直線の交点)

    お世話になってます。 ベクトルの分解を応用して、解く問題からの質問です。 問「△ABCの辺ABをk:l、辺ACをm:nに内分する点をそれぞれD、Eとし、線分DCと線分EBとの交点をPとする。AB↑=a↑、AC↑=b↑とするとき、AP↑を、a↑、b↑を用いて表せ。」 ベクトルの分解(一次結合)は分かっているので、このことから、実数s、t、s'、t'を用いて、互いに平行でない二つのベクトルa↑、b↑について、 「sa↑+tb↑=s'a↑+t'b↑⇒s=s'且つt=t'」の法則を利用する点も理解できます。一つのベクトルAP↑について、これに等しい二つの式を立てる……のイメージだと思いますが、多分その考えを利用する以前のところで躓いています。 解の例で、 DC、EBを点Pが、それぞれ BP:PE=s:(1-s)、CP:PD=t:(1-t)としたとき、 AP↑=(1-s)AB↑+sAE↑ となる、とありました。 これが成り立つわけが分かりません。(基礎的な事の理解が出来ていないのかも知れません…) お恥ずかしい限りですが、ご教示下さい。お願いします。

  • ベクトル

    三角形ABCにおいて、AB=8、AC=6、角BAC=60°である。 辺ABの中点をM、辺ACを1:2に内分する点をNとすると、 ベクトルAM=ア/イベクトルAB、ベクトルAN=ウ/エベクトルAC であ る。 また、ベクトルABとベクトルACの内積は ベクトルAB・ベクトルAC=オカ である。 点Mを通り辺ABに垂直な直線と点Nを通り辺ACに垂直な直線との交点をPとする。 s、tを実数として、ベクトルAP=sベクトルAB+tベクトルACとおくと ベクトルMP={s-(キ/ク)}ベクトルAB+tベクトルAC であるから、AB垂直MPより ケs+3t=コ であり、同様にAC垂直NPより サs+3t=シ である。したがって s=ス/セ、t=ソ/タ である。 さらに、直線APと直線BCの交点をQとおくと BQ:QC=1:チ/ツである。 ベクトル苦手なので、全然わかりません… 助けてください>_< よろしくお願いします

  • ベクトル

    四面体OABCにおいて、辺OAの中心をP、辺BCを2:1に内分する点をQ、辺OCを1:3に内分する点をR、辺ABをs:(1-s)に内分する点をSとする。ただし、0<s<1とする。 (1)PQをa、bおよびcで表せ。 (2)RSをa、b、cおよびsで表せ。 (3)線分PQと線分RSが交わるときのsの値を求めよ。

  • 三角形と線分の比(高校数学)

    三角形ABCにおいて、辺ABを2:1に内分する点をP、辺ACの中点をQとする。BQとCPの交点をRとするときPR:PCの比を求めよ。 の答えの求め方を教えてください。 よろしくお願いします。

  • このベクトルの問題を教えてください。

    このベクトルの問題を教えてください。 問題は 平面上に三角形ABCがあり、実数tが0≦t≦1の範囲で動くとき、 APベクトル+2tBPベクトル+(1-t)CPベクトル=0ベクトルをみたす 点Pの軌跡を求めよ。 です。 僕はまず、ベクトルの始点を原点にそろえて、Pベクトルについての方程式を立てたんですが、その先がわかりません。 何回も計算しても答えが合いません。 ちなみに答えは 線分ABを2:1に内分する点と線分ACの中点を結んだ線分 です。