• ベストアンサー
  • すぐに回答を!

平行四辺形について

図において.四角形ABCDは平行四辺形である.線分BAを延長した直線と∠BCDの二等分線の交点をEとする.∠BEC=52°のとき.∠Xの大きさを求めてください 解き方の説明があればうれしいです お願いします!

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数242
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

BEとCDは平行なので∠AEC=∠DCE=52°(錯角) ∠ECB=∠DCE=52°(条件より) △BCEは二等辺三角形 ∠EBC=180°-52°×2 =76° ∠x=∠EBC=76°(平行四辺形の対角)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 平行四辺形について

    平行四辺形ABCDの各辺の中点を図のようにE,F,G,Hとし、線分AG,CEと線分BH,DFとの交点をK、M,Nとする。このとき、四角形KLMNの面積は四角形ABCDの面積の何倍か。 面積の図は(頂点は)左上から下、右、に回って A,E,B,F,C,G,D,H 真中の平行四辺形は右から下と言う順でL,M,N,K 全体的にどのように求めるかわからないのですが、 特に、AK=2EL、EL=NG についてどうして成り立つのかがよくわかりません。

  • 中学数学 平行四辺形の問題です

    図が見にくいので、文字で入力をさせていただきます。 図で、四角形ABCDは平行四辺形、Eは、角ABCの二等分線と辺ADとの交点である。また、Fは辺CBの延長線上の点、Gは辺CD上の点で、△AFBと△EBGの面積は等しい。 AB=8cm、FB=5cm、BC=10cmのとき、次の(1)と(2)に答えなさい。 (1)線分EDの長さは何センチか答えなさい。 (2)△EGDの面積は、平行四辺形ABCDの面積の何倍か、求めなさい。 以上です。 急ぎなのですが、大変恐縮ですが、お分かりになる方がいらっしゃいましたら よろしくお願いいたします。

  • 平行四辺形

    図で.四角形ABCDは平行四辺形であり.対角線の交点をOとする. 辺BC上に点E.Fがあって.AO=EO.OF//DCである. ∠CAD=35°.∠ACD=70°のとき.∠EOFの大きさを求めてください お願いします 解き方の説明もあるとうれしいです

その他の回答 (2)

  • 回答No.3

#1です。 すみません、思いっきり見間違えてました。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

ADとECの交点をFとします。 ここの対頂角は、等しいですね。角AFE=DFC また、良く考えると、角EAFは、角Xと同じですよね? 平行四辺形なので、角Xと角Bが等しくて、更にBCとADが平衡なので、角EAFはXになります。 すると、三角形AFEと三角形DFCは相似なので、残りの角DCFと52度は等しいことになります。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 平行四辺形について

    平行四辺形ABCDを対角線BDで折り返し、Aに対応する点をEとし、BCとDEの交点をFとする。また、ABとCEをそれぞれ延長したときの交点をGとする。このとき次の問いを答えなさい。 (1)△FBEと△FDCが合同であるとことを証明しなさい。 これはできたのですが (2)BF:FC=2:1であるとき、△FECの面積と平行四辺形ABCDの面積の比を、もっとも簡単な整数の比で表しなさい。 この問題が分かりませんでした。解答をみると・・・ 考えとしては△FECの面積=1として考えました。 そうすると△BEF=2となりますよね。 ここまでは納得。 次に △BFD=4となり、△DFC=2となり、△BCD=6より平行四辺形ABCD=12となると書いてありました。 この部分の△BFD=4となるところが分かりませんでした。この部分の解説をお願いします。 また、四角形BGCDは平行四辺形になるのですか?もし、平行四辺形になるとしたらどうしてなるのですか?解説をお願いします。

  • 平行四辺形の面積

    平行四辺形ABCDがある。辺AD、BC上にAE:ED=CF:FB=1:3となる点E、Fをとる。線分EFと対角線BDとの交点をGとする。 平行四辺形ABCDの面積は、四角形ABGEの面積の何倍ですか? という問題です。 わからなかったので解答を見たら次のように書いてありました。 四角形ABGE=△ABG+△AGE=1/4(平行四辺形ABCD)+1/4×1/4(平行四辺形ABCD) =5/16(平行四辺形ABCD) となっていました。 四角形ABGE=△ABG+△AGEまではわかるのですが、それ以降の式がわかりません。 すいませんが詳しい解説をお願いします。 どうして、1/4(平行四辺形ABCD)+1/4×1/4(平行四辺形ABCD)の式が出てきたのですか?

  • 中学の一次関数と平行四辺形の問題です

    こちらの問題が見にくいため、問題を記載します。 大変見にくくて申し訳ありません。 一次関数と平行四辺形の問題です。 図で、Oは原点、四角形ABCDは平行四辺形で、Eは辺ABとX軸との交点である。 3点A,D,Eの座標がそれぞれ(-2、8)、(8、10)、(-6、0)で、平行四辺形ABCDの面積が108平方センチメートルのとき、次の問に答えなさい。 (1)直線ABの式をもとめなさい。 (2)点Bの座標を求めなさい。 以上です。 急ぎなのですが、もしおわかりになる方がいらっしゃいましたらよろしくお願いします。

  • 平行四辺形の問題です。

    平行四辺形ABCDがあります。 辺ABを2:3に分ける点E、線分DEと対角形ACの交点をF、ACの中点をGとします。この時次の問いに答えなさい。 (1) AF:FGをもっとも簡単な整数比で答えなさい。 (2) 平行四辺形ABCDの面積は△AEGの面積の何倍ですか?

  • 平行四辺形について

    図にように.平行四辺形ABCDの辺上に点E.F.G.Hがあり.EF//HGである. このとき.AFのの長さを求めてください 解き方の説明もあればうれしいです

  • 平行四辺形であるための条件

    平行四辺形であるための条件を勉強しています。 その条件の一つで、教科書にはかかれてない条件で平行四辺形を証明したいと思います。 「四角形ABCDで、対角線の交点をOとするとき、AO=CO、∠B=∠Dならば四角形ABCDは平行四辺形であることを証明せよ。」 これを証明したいのですが、うまくできません。証明の解説をお願いします。

  • 平行四辺形の問題です

    前の続きなのですが・・・。 平行四辺形ABCDがあり辺ABを2:3に分ける点E、線分DEと対角線ACの交点をF 対角線ACの中点をGとします。 平行四辺形ABCDの面積は△AEFの面積の何倍ですか? この問題なのですが、中学生レベルでの考え方と答えをお願いします。

  • 平行四辺形の問題がわかりません

    平行四辺形ABCDがある。AB=AE=ECとなるような点EをBC上にとる。 AEの中点をFとする。∠BAE=40°とする (1)∠AEDを求めよ (2)三角形DFEの面積をSとしたとき、平行四辺形ABCDをSを使った式で表せ。 AB=AEだから△ABEは二等辺三角形 よって∠ABE=∠AEB=70 平行四辺形だから∠ABE=∠ADC=70、∠BAD=∠BCD=110 ∠BAD=110-40=70 よって四角形AECDは台形になる・・・あれ? ここで詰まってしまいました。 よろしくお願いいたします。

  • 平行四辺形の面積比

    四角形abcdは面積30センチ平方キロメートルの平行四辺形であり、点e、fはそれぞれ辺辺cd、ad野中点である。線分aeと線分bfの交点をg、線分aeと線分bdの交点をhとするとき、三角形afgと三角形bghの面積比を求めよ。ただし、小学校で学習する知識で解くこと。 という問題がレポートで出たのですがわかりません

  • 自作、次の条件のとき四角形は平行四辺形となりますか

    平行四辺形ABCDがあり、対角線の交点をOとします。このとき、次の性質があります。 [1]AB//CD [2]AD//BC [3]AB=CD [4]AD=BC [5]∠A=∠C [6]∠B=∠D [7]AO=CO [8]BO=DO [9]∠OAB=∠OCD [10]∠OAD=∠OCB [11]∠OBA=∠ODC [12]∠OBC=∠ODA ひまつぶしに、[1]から[12]まで条件からの2つを組み合わせたものは、四角形ABCDが平行四辺形であると同値かどうか考えてみました。 [1][4]、[1][9]、[1][11]、[2][3]、[2][10]、[2][12]、[3][5]、[3][6]、[3][7]、[3][8]、[3][10]、[3][12]、[4][5]、[4][6]、[4][7]、[4][8]、[4][9]、[4][11]、[5][7]、[6][8]、[10][12] は平行四辺形と同値でなく、それ以外は同値という結論になりました。しかし、自信がないので、以下の3つだけでいいので、確かめていただけないでしょうか。 言葉で説明するのは難しいと思いますが、よければ根拠のあるご回答をいただけると幸いです。 四角形ABCDで、[3]AB=CD、[5]∠A=∠Cのとき、四角形は平行四辺形とは限らない。 四角形ABCD(対角線の交点をO)で、[5]∠A=∠C、[7]AO=COのとき、四角形は平行四辺形とは限らない。 四角形ABCD(対角線の交点をO)で、[5]∠A=∠C、[8]BO=DOのとき、四角形は平行四辺形となる。

専門家に質問してみよう