ベストアンサー 簡単かもしれませんが・・・ 2010/09/07 19:32 簡単かもしれませんが・・・ 直角三角形ABCを、lを軸として回転させできる立体を、回転軸を含む平面で切ると、 どのような形になりますか?適切な名前で答えなさい。 という問題が自信なくてw どなたか教えてくれないでしょうか? 画像を拡大する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー Knotopolog ベストアンサー率50% (564/1107) 2010/09/07 19:38 回答No.1 二等辺三角形 になります. 質問者 お礼 2010/09/07 19:46 こんな単純な答えだったんですねw 回転の軸を含む~の言うところで迷ってましたw ありがとうございますw 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 三平方の定理 図のような直角三角形ABCがある. この三角形を辺ABを軸として1回転させてできる立体の体積を求めてください ただし.円周率をπとします 分からず困っています 解き方の説明もあればうれしいです 解き方 直角三角形ABCの、Cの頂点を通り、ABに平行な線を軸として、1回転させて出来る立体の体積の求め方ですが、円柱÷2と考えてはいけないのでしょうか?解答は円柱から円錐をくりぬいた立体となっています。 回転体の体積 図の.直角三角形を.直線lを軸として1回転させてできる立体の体積を求めてください ただし.円周率はπとします 分からず困っているので教えてください 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 数学の問題です・・・。 数学の宿題なのですがわかりかせん・・・。 空間図形からの問題です。 ( 1 ) 空間における直線や平面について、次のア~エのうち、いつでも正しいものはどれですか。 また、いつでも正しいとは限らないものについては、正しくない例を図で示しなさい。 ア 1つの直線に垂直な2つの直線は平行である。 イ 1つの直線に垂直な2つの平面は平行である。 ウ 1つの平面に平行な2つの直線は平行である。 エ 1つの平面に平行な2つの平面は平行である。 ( 2 ) 右の図の直角三角形ABCを、辺BCを軸として1回転させてできる回転体の見取り図をかきなさい。 ベクトルの問題です (阪大) 空間に座標軸をとり、原点をOとする。Oを一頂点とする正四面体OABCがり、3頂点A,B,Cは、xy平面上の放物線y=kx^2をy軸の周りに回転してできる曲面上にある。 この正四面体の一辺の長さlをkであらわせ。ただし、k>0とする。 解答 点Aを通りy軸に垂直な平面とOB y軸に定める平面と与えられた曲面との交点をB^とすると OB=OA=OB^ ゆえに、BとB^は一致するCについても同様であるから 平面ABCはy軸に垂直である、したがって平面ABCとy軸の交点 Hは△ABCの重心である。 ∴AH=2/3・AM=2/3 ・√3i/2 = l/√3 また題意から OH→=kAH^2→=kl^2/3 ゆえに、 OA→=OH→^2+HA^2→に上の関係を代入して l^2=K^2l^4/9 + l^2/3 ∴kl=√6 (答) l=√6/k 質問です、まず図を書いてみました。3次元のグラフを書いて xy平面上に0を頂点として(凸を下向きにして)描き この放物線がy軸上の周りをコマのように回ってるイメージを描きました。 そのあと、正四面体の点ABCをおき、このコマのように回ってる中に正四面体が入るように図を描きました。 質問1:点Aをとおりy軸に垂直な平面とはいったいどんなものですか??平面ABCのことですか?平面ABCがy軸に垂直なのですか??もし平面ABCならなぜですか??正四面体の性質の何かからですか?? 質問2:y軸の定める平面と、あたえられた曲面?って二つわかりませんでした。それらが交差する点がB^らしいのですが。。 そして、BとB^は一致するみたいですけど。。これらの図が不明なので、なにか図があって、それが、一致するとは読み取れるのですが。。 どうして、平面ABCとy軸の交点Hは三角形ABCの重心なのですか?正四面体の性質と関係してますか??正四面体を調べても、 この部分の説明とつながれませんでした>_< 質問3:最後の方にある、また題意からOH→=kAH^2→。。って部分がありますけど、題意のどこからこれがでてきたのでしょうか?? すごく不明です>_< どなたか教えてください、宜しくお願いします!!>_< 回転体の体積の問題 次のような問題がある大学の解析の試験で出題されました。 xy平面上において(√3,0)(0,1)を結ぶ線分を、まずy軸を軸として回転させてできた回転体を、さらにx軸を軸として回転させた結果できる立体の体積を求めよ。 球体の中に空洞ができる、ということはなんとなく理解したのですが、空洞の体積の求め方が分かりません。 どなたかご教授願いますm(__)m 空間図形の問題 図の図形を直線lを軸として1回転させてできる立体の見取り図をかけ。また、その立体の体積の体積を求めよ。 という問題です。 行き詰っています。 中学三年生です。 ある数学の問題なのですが、解き方がまったく分からず困っています。 『図の△ABCはAC=BC=3cmの直角二等辺三角形で,点D,Eは線分ABの三等分点(AD=DE=EB)であり,また,△ABC∽△DEFである。 このとき,図の斜線部分を直線ACを軸として1回転させてできる立体の体積を求めなさい。 ただし,円周率はπを用いること。』 今まで決まったようなパターンしかやってこなかったので、どのような図になり、計算がどういう風に求められていくのかが分かりません。 教えてください。お願いします。 回転体の体積に関する問題 ある"平面図"を"平面図を交差しない任意の軸"で回転させた場合にできる立体の体積Vは 平面図の面積をS、回転軸と平面図の重心までの距離をrとした場合。 V=2πrS で求めることができるそうなのですが、この式は上記条件の一般式として正しいですか? 導出方法も含めて教えていただきたいです。 立体図形の回転 一般に平面図形の回転は1周(360度)で元に戻ります。 しかし、一般に立体図形の場合はx軸中心に360度回転する間に同時にy軸中心に180度回転してしまったら、x軸を基準に考えると720度回転しないと元に戻らないことになってしまうと思うのです。 これは720度回転しないと元に戻らないという粒子のスピンの問題と関連があるような気がしたのですが、どうなんでしょうか? アドバイスをお願いします。 問題 x-y平面上に原点O、頂点A(2/3,0),頂点B(11/12,3),頂点C(0,3)があります。 今、点Pを辺AB上にとります。 座標軸の1目もりは1cmと考えてください。 (1)点Pを通り、y軸に平行な直線と、X軸、直線BC、との交点をそれぞれD,Eとします。 三角形ADPをy軸を軸として1回転させてできる立体の体積と、 三角形BEPをy軸を軸として1回転させてできる立体の体積が等しくなるとき、 点PのX座標はいくつでしょう? という問題なのですが、 私は、直線ABの方程式y=12x-8を求め、 点Pの座標を(t,12t-8)とおき、 実際に三角形ADPと、三角形BEPの回転体の体積を求め、その二つが一致するという方程式を立てて解こうとしました。 しかし、回転体の形が複雑なためか、式が複雑になり、最終的にかなり数値の大きい三次方程式になりとくことができませんでした。 そのため、この問題にはもっと違うアプローチの仕方があると思います。 何かよい解法が分かる方はアドバイスをいただけないでしょうか? 体積 曲線y=sinx(0≦x≦π)とx軸とで囲まれた図形をx軸まわりに1回転してできる立体の体積を求める問題 1回転すると楕円形みたいな形になりますが。 どうやって体積を求めるのでしょうか? V=∫π(y^2)dxというしきになるのが分かりません。 学芸大学2022年数学 (Ⅳ)放物線 Z = X 2乗を Z軸のまわりに1回転させてできる図形と、平面2 X-Z +1=0で囲まれた立体を D とする。ただし平面に2X-Z +1=0は点(0,0,1)を通りベクトル(2,0,-1)に垂直な平面である。 (1) 実数 tに対して、立体 D を平面 y = t で切断したときの断面積 S(t)を求めよ。 (2)立体Dの体積を求めよ。 解き方を教えて下さい。 よろしくお願い致します。 行列の変換での問題 [問題文]空間において,x-z平面上の単位ベクトル(u,0,w)を考える。 y軸まわりの回転を表す行列のうち、ベクトル(0,0,1)をベクトル (u,0,w)に変換するものを求めよ。また求めた行列を利用して、(u,0,w) を軸とする角度θの回転を表す行列を求めよ。 3次元空間においての変換だと思うんですが、y軸の周りとなるとどのような変換になるんでしょうか。 わかる人にはわかるという問題だと思います。 お願いします。 数IIIの積分の応用問題なのですが xy平面上に二点P(x,0)、Q(x,sinx)をとり、PQを斜辺とする直角二等辺三角形PQRを、x軸に垂直な平面上を図のように作る。 いまPがx軸上を原点Oから点A(π,0)まで動くとき、この直角二等辺三角形が通過してできる立体の体積を求めよ。 PQRの面積をS(x)とおいて、その結果を0からπまでの区間で積分しようとしたのですが、うまく結果がでず悩んでいます。 先生に聞いてもよく分からずに困っています。 お時間がある方で結構ですので、詳しい解説をお願いします。 表面積について 図のように.1辺が3cmの正方形を3つ組み合わせた図形がある.この図形を.直線lを軸として1回転してできる立体をP.直線mを軸として1回転してできる立体をQとする. PとQでは表面積はどちらがどれだけ大きいか.求めてください 解き方の説明があるとうれしいです お願いします どんな図形? どんな図形? 問題文:ある立体の底面は、曲線y=sinx(0≦x≦π)とx軸とで囲まれた図形 で、この立体をx軸に垂直な平面で切った切り口は底辺がsinxで高さがx の三角形である。この立体の体積を求めよ。 上記のような問題です。 もうお気づきかもしれませんが数IIIの積分の問題です。 文章から問題は解けたのですがまったく図形が想像できません。 曲線y=sinx(0≦x≦π)とx軸とで囲まれた図形→そうですか 切り口は底辺がsinxで高さがx→はい?どこをどう切れば?さっきと言ってる事変わってない? 見たいな感じで困惑しています。 どなたか図示してください。お願いします。 またグラフとか立体とかの形を見るのに使えるソフトをご存知でしたらぜひ教えてください。 数学の問題です。 数学の問題です。 ある立体の底面は、y=sinx(0≦x≦π)とx軸とで囲まれた図形で、この立体をx軸に垂直な平面で切った切り口は、底辺がsinxで高さがxの二等辺三角形である。この立体の体積を求めよ。 回転してできる体積 x=a,x=b(a<b),x軸,y=f(x)で囲まれる図形をx軸で回転してできる体積Vは V=π∫(a→b){f(x)}^2 dx で与えられる。 それの応用として、 (問)y=x+2,y=x^2で囲まれる図形を、y=x+2で回転してできる体積を求めよ. という問題を考える。 注;ハート型の半分を回転させることに注意 軸が傾いていることと、半ハート型の回転により、分けて積分しなければいけないので、計算がいやらしい。 ところで、xy平面上に直線lがあり、lとある曲線で囲まれる閉領域Dがある. このとき、Dをlを軸に回転してできる体積Vは V=2π∬(D)d(P)dxdy で求めてみたところ、どうやら答えが同じになる。 ここでd(P)とは xy平面上の点P(x,y)に対して d(P):=直線lと点Pとの距離 これを使うと、この問題の計算が格段に楽になる。 ただ問題なのは、この公式は正しいのか?ということである。 だれか、この公式が正しい、または間違っていること分かる方、解答をお願いします。 (lがx軸に平行なときは一致することは自分で確かめてみました) 円板の回転 平面x=1上に円板D:y^2+z^2<=1がある。 DをX軸の周りに一回転して出来る立体の体積vを求めよ。 本文そのままです。分からないので教えて頂ければ嬉しいです。どうぞよろしくお願いします。
お礼
こんな単純な答えだったんですねw 回転の軸を含む~の言うところで迷ってましたw ありがとうございますw